Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Lancet ; 388(10055): 1985-1994, 2016 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-27789021

RESUMO

BACKGROUND: Articular cartilage injuries have poor repair capacity, leading to progressive joint damage, and cannot be restored predictably by either conventional treatments or advanced therapies based on implantation of articular chondrocytes. Compared with articular chondrocytes, chondrocytes derived from the nasal septum have superior and more reproducible capacity to generate hyaline-like cartilage tissues, with the plasticity to adapt to a joint environment. We aimed to assess whether engineered autologous nasal chondrocyte-based cartilage grafts allow safe and functional restoration of knee cartilage defects. METHODS: In a first-in-human trial, ten patients with symptomatic, post-traumatic, full-thickness cartilage lesions (2-6 cm2) on the femoral condyle or trochlea were treated at University Hospital Basel in Switzerland. Chondrocytes isolated from a 6 mm nasal septum biopsy specimen were expanded and cultured onto collagen membranes to engineer cartilage grafts (30 × 40 × 2 mm). The engineered tissues were implanted into the femoral defects via mini-arthrotomy and assessed up to 24 months after surgery. Primary outcomes were feasibility and safety of the procedure. Secondary outcomes included self-assessed clinical scores and MRI-based estimation of morphological and compositional quality of the repair tissue. This study is registered with ClinicalTrials.gov, number NCT01605201. The study is ongoing, with an approved extension to 25 patients. FINDINGS: For every patient, it was feasible to manufacture cartilaginous grafts with nasal chondrocytes embedded in an extracellular matrix rich in glycosaminoglycan and type II collagen. Engineered tissues were stable through handling with forceps and could be secured in the injured joints. No adverse reactions were recorded and self-assessed clinical scores for pain, knee function, and quality of life were improved significantly from before surgery to 24 months after surgery. Radiological assessments indicated variable degrees of defect filling and development of repair tissue approaching the composition of native cartilage. INTERPRETATION: Hyaline-like cartilage tissues, engineered from autologous nasal chondrocytes, can be used clinically for repair of articular cartilage defects in the knee. Future studies are warranted to assess efficacy in large controlled trials and to investigate an extension of indications to early degenerative states or to other joints. FUNDING: Deutsche Arthrose-Hilfe.


Assuntos
Cartilagem Articular/cirurgia , Condrócitos/transplante , Articulação do Joelho/cirurgia , Septo Nasal/citologia , Engenharia Tecidual , Transplantes , Adulto , Cartilagem Articular/lesões , Cartilagem Articular/patologia , Medicina Baseada em Evidências , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiopatologia , Masculino , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Minimamente Invasivos , Dor/etiologia , Qualidade de Vida , Recuperação de Função Fisiológica , Autorrelato , Suíça , Alicerces Teciduais , Transplante Autólogo , Resultado do Tratamento
2.
Int J Artif Organs ; 32(11): 763-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20020407

RESUMO

Autologous tissue transfer, allografts and prosthetic replacements have so far failed to offer functional solutions for the treatment of long circumferential tracheal defects. Because of the shortcomings related with these strategies, interest has turned increasingly to the field of tissue engineering which applies the principles of engineering and life sciences in an effort to develop in vitro biological substitutes able to restore, maintain, or improve tissue and organ function. The advances in this field during the past decade have thus provided a new attractive approach toward the concept of functional substitutes and may represent an alternative to the shortage of suitable grafts for reconstructive airway surgery. This article gives an overview of the tissue engineering approach and of the encouraging strategies attempted so far in trachea regeneration.


Assuntos
Órgãos Bioartificiais , Medicina Regenerativa , Engenharia Tecidual , Traqueia/transplante , Doenças da Traqueia/cirurgia , Animais , Humanos
3.
J Thorac Cardiovasc Surg ; 139(2): 437-43, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19995663

RESUMO

OBJECTIVE: We sought to determine the relative contributions of epithelial cells and mesenchymal stem cell-derived chondrocytes to the survival of tissue-engineered airway transplants in pigs. METHODS: Nonimmunogenic tracheal matrices were obtained by using a detergent-enzymatic method. Major histocompatibility complex-unmatched animals (weighing 65 +/- 4 kg) were divided into 4 groups (each n = 5), and 6 cm of their tracheas were orthotopically replaced with decellularized matrix only (group I), decellularized matrix with autologous mesenchymal stem cell-derived chondrocytes externally (group II), decellularized matrix with autologous epithelial cells internally (group III), or decellularized matrix with both cell types (group IV). Autologous cells were recovered, cultured, and expanded. Mesenchymal stem cells were differentiated into chondrocytes by using growth factors. Both cell types were seeded simultaneously with a dual-chamber bioreactor. Animals were not immunosuppressed during the entire study. Biopsy specimens and blood samples were taken from recipients continuously, and animals were observed for a maximum of 60 days. RESULTS: Matrices were completely covered with both cell types within 72 hours. Survival of the pigs was significantly affected by group (P < .05; group I, 11 +/- 2 days; group II, 29 +/- 4 days; group III, 34 +/- 4 days; and group IV, 60 +/- 1 days). Cause of death was a combination of airway obstruction and infection (group I), mainly infection (group II), or primarily stenosis (group III). However, pigs in group IV were alive, with no signs of airway collapse or ischemia and healthy epithelium. There were no clinical, immunologic, or histologic signs of rejection despite the lack of immunosuppression. CONCLUSIONS: We confirm the clinical potential of autologous cell- and tissue-engineered tracheal grafts, and suggest that the seeding of both epithelial and mesenchymal stem cell-derived chondrocytes is necessary for optimal graft survival.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Traqueia/transplante , Animais , Reatores Biológicos , Condrócitos , Células Epiteliais , Sobrevivência de Enxerto , Suínos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Traqueia/citologia
4.
J Thorac Cardiovasc Surg ; 138(3): 586-93; discussion 592-3, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19698839

RESUMO

OBJECTIVE: We sought to bioengineer a nonimmunogenic tracheal tubular matrix of 6 cm in length and test its structural, functional, and immunologic properties in vitro and in vivo. METHODS: Twelve-centimeter tracheal segments were harvested from Yorkshire boars. Half of each segment was subjected to a detergent-enzymatic method (containing sodium deoxycholate/DNase lavations) of decellularization for as many cycles as needed, and the other half was stored in phosphate-buffered saline at 4 degrees C as a control. Bioengineered and control tracheas were then implanted in major histocompatibility complex-unmatched pigs (allograft) or mice (xenograft) heterotopically for 30 days. Structural and functional analysis and immunostaining were performed after each detergent-enzymatic method cycle and transplantation. RESULTS: Compared with control tracheas, bioengineered matrices displayed no major histocompatibility complex class I and II antigens after 17 detergent-enzymatic method cycles, without significant (P > .05) differences in their strain ability (rupture force, 56.1 +/- 3.3 vs 55.5 +/- 2.4 N; tissue deformation at 203% +/- 13% vs 200% +/- 8% or 12.2 +/- 0.8 vs 12 +/- 0.5 cm; and applied maximum force, 173.4 +/- 3.2 vs 171.5 +/- 4.6 N). Thirty days after implantation, significantly (P < .01) smaller inflammatory reactions (392 vs 15 macrophages/mm(2) and 874 vs 167 T lymphocytes/mm(2)) and P-selectin expressions (1/6 vs 6/6) were observed in both the xenograft and allograft models with bioengineered matrices compared with those seen with control tracheas. There was no development of anti-pig leukocyte antigen antibodies or increase in both IgM and IgG content in mice implanted with bioengineered tracheas. CONCLUSIONS: Bioengineered tracheal matrices displayed similar structural and mechanical characteristics to native tracheas and excite no immune response to 30 days when implanted as allografts or xenografts. This method holds great promise for the future of tissue-engineered airway replacement.


Assuntos
Bioprótese , Engenharia Tecidual/métodos , Traqueia/cirurgia , Traqueia/transplante , Animais , Camundongos , Distribuição Aleatória , Estresse Mecânico , Suínos , Transplante Homólogo/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA