Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 7(7): e1002182, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21829358

RESUMO

The Mycobacterium tuberculosis Ser/Thr kinase PknB has been implicated in the regulation of cell growth and morphology in this organism. The extracytoplasmic domain of this membrane protein comprises four penicillin binding protein and Ser/Thr kinase associated (PASTA) domains, which are predicted to bind stem peptides of peptidoglycan. Using a comprehensive library of synthetic muropeptides, we demonstrate that the extracytoplasmic domain of PknB binds muropeptides in a manner dependent on the presence of specific amino acids at the second and third positions of the stem peptide, and on the presence of the sugar moiety N-acetylmuramic acid linked to the peptide. We further show that PknB localizes strongly to the mid-cell and also to the cell poles, and that the extracytoplasmic domain is required for PknB localization. In contrast to strong growth stimulation by conditioned medium, we observe no growth stimulation of M. tuberculosis by a synthetic muropeptide with high affinity for the PknB PASTAs. We do find a moderate effect of a high affinity peptide on resuscitation of dormant cells. While the PASTA domains of PknB may play a role in stimulating growth by binding exogenous peptidoglycan fragments, our data indicate that a major function of these domains is for proper PknB localization, likely through binding of peptidoglycan fragments produced locally at the mid-cell and the cell poles. These data suggest a model in which PknB is targeted to the sites of peptidoglycan turnover to regulate cell growth and cell division.


Assuntos
Divisão Celular/fisiologia , Mycobacterium tuberculosis/enzimologia , Peptídeos/metabolismo , Peptidoglicano/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Mycobacterium tuberculosis/genética , Peptídeos/genética , Peptidoglicano/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética
2.
J Am Chem Soc ; 133(29): 11147-53, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21678979

RESUMO

Nanocarriers that combine multiple properties in an all-in-one system hold great promise for drug delivery. The absence of technology to assemble highly functionalized devices has, however, hindered progress in nanomedicine. To address this deficiency, we have chemically synthesized poly(ethylene oxide)-ß-poly(ε-caprolactone) (PEO-b-PCL) block polymers modified at the apolar PCL terminus with thioctic acid and at the polar PEO terminus with an acylhydrazide, amine, or azide moiety. The resulting block polymers were employed to prepare nanoparticles that have a gold core, an apolar polyester layer for drug loading, a polar PEO corona to provide biocompatibility, and three different types of surface reactive groups for surface functionalization. The acylhydrazide, amine, or azide moieties of the resulting nanoparticles could be reacted with high efficiencies with modules having a ketone, isocyanate, or active ester and alkyne function, respectively. To demonstrate proof of principle of the potential of multisurface functionalization, we prepared nanoparticles that have various combinations of an oligo-arginine peptide to facilitate cellular uptake, a histidine-rich peptide to escape from lysosomes, and an Alexa Fluor 488 tag for imaging purposes. It has been shown that uptake and subcellular localization of the nanoparticles can be controlled by multisurface modification. It is to be expected that the modular synthetic methodology provides unique opportunities to establish optimal configurations of nanocarriers for disease-specific drug delivery.


Assuntos
Portadores de Fármacos/química , Ouro/química , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/farmacocinética , Células HeLa , Humanos , Lactonas/química , Nanopartículas/efeitos adversos , Nanopartículas/ultraestrutura , Polietilenoglicóis/química , Propriedades de Superfície , Ácido Tióctico/química
3.
J Am Chem Soc ; 131(47): 17394-405, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19904943

RESUMO

Although hundreds of heparan sulfate binding proteins have been identified and implicated in a myriad of physiological and pathological processes, very little information is known about the ligand requirements for binding and mediating biological activities by these proteins. This difficulty results from a lack of technology for establishing structure-activity relationships, which in turn is due to the structural complexity of natural heparan sulfate (HS) and difficulties of preparing well-defined HS oligosaccharides. To address this deficiency, we developed a modular approach for the parallel combinatorial synthesis of HS oligosaccharides that utilizes a relatively small number of selectively protected disaccharide building blocks, which can easily be converted into glycosyl donors and acceptors. The utility of the modular building blocks has been demonstrated by the preparation of a library of 12 oligosaccharides, which has been employed to probe the structural features of HS for inhibiting the protease, BACE-1. The complex variations in activity with structural changes support the view that important functional information is embedded in HS sequences. Furthermore, the most active derivative provides an attractive lead compound for the preparation of more potent compounds, which may find use as a therapeutic agent for Alzheimer's disease.


Assuntos
Heparitina Sulfato/síntese química , Sequência de Carboidratos , Heparitina Sulfato/química , Dados de Sequência Molecular , Relação Estrutura-Atividade
4.
Biotechnol Prog ; 33(4): 954-965, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28188705

RESUMO

We designed, built or 3D printed, and screened tubular reactors that minimize axial dispersion to serve as incubation chambers for continuous virus inactivation of biological products. Empirical residence time distribution data were used to derive each tubular design's volume equivalent to a theoretical plate (VETP) values at a various process flow rates. One design, the Jig in a Box (JIB), yielded the lowest VETP, indicating optimal radial mixing and minimal axial dispersion. A minimum residence time (MRT) approach was employed, where the MRT is the minimum time the product spends in the tubular reactor. This incubation time is typically 60 minutes in a batch process. We provide recommendations for combinations of flow rates and device dimensions for operation of the JIB connected in series that will meet a 60-min MRT. The results show that under a wide range of flow rates and corresponding volumes, it takes 75 ± 3 min for 99% of the product to exit the reactor while meeting the 60-min MRT criterion and fulfilling the constraint of keeping a differential pressure drop under 5 psi. Under these conditions, the VETP increases slightly from 3 to 5 mL though the number of theoretical plates stays constant at about 1326 ± 88. We also demonstrated that the final design volume was only 6% ± 1% larger than the ideal plug flow volume. Using such a device would enable continuous viral inactivation in a truly continuous process or in the effluent of a batch chromatography column. Viral inactivation studies would be required to validate such a design. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:954-965, 2017.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Afinidade/instrumentação , Desenho de Equipamento , Impressão Tridimensional/instrumentação , Inativação de Vírus , Anticorpos Monoclonais/química , Fatores de Tempo
6.
J Biol Chem ; 284(13): 8643-53, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19164296

RESUMO

Although much progress has been made toward the identification of innate immune receptors, far less is known about how these receptors recognize specific microbial products. Such studies have been hampered by the need to purify compounds from microbial sources and a reliance on biological assays rather than direct binding to monitor recognition. We have employed surface plasmon resonance (SPR) binding studies using a wide range of well defined synthetic muropeptides derived from Gram-positive (lysine-containing) and Gram-negative (diaminopimelic acid (DAP)-containing) bacteria to demonstrate that Toll-like receptor 2 can recognize peptidoglycan (PGN). In the case of lysine-containing muropeptides, a limited number of compounds, which were derived from PGN remodeled by bacterial autolysins, was recognized. However, a wider range of DAP-containing muropeptides was bound with high affinity, and these compounds were derived from nascent and remodeled PGN. The difference in recognition of the two classes of muropeptides is proposed to be a strategy by the host to respond appropriately to Gram-negative and -positive bacteria, which produce vastly different quantities of PGN. It was also found that certain modifications of the carboxylic acids of isoglutamine and DAP can dramatically reduce binding, and thus, bacterial strains may employ such modifications to evade innate immune detection. Cellular activation studies employing highly purified PGN from Bacillus licheniformis, Bacillus subtilis, Escherichia coli, Lactobacillus plantarum, Micrococcus luteus, and Staphylococcus aureus support the structure binding relationship. The data firmly establish Toll-like receptor 2 as an innate immune sensor for PGN and provides an understanding of host-pathogen interactions at the molecular level.


Assuntos
Bactérias Gram-Negativas/química , Bactérias Gram-Positivas/química , Imunidade Inata/fisiologia , Peptídeos/química , Peptidoglicano/química , Receptor 2 Toll-Like/química , Linhagem Celular , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Positivas/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Peptídeos/imunologia , Peptidoglicano/imunologia , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Receptor 2 Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA