Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Glob Chang Biol ; 28(23): 7009-7022, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36071549

RESUMO

Arctic ecosystems are changing dramatically with warmer and wetter conditions resulting in complex interactions between herbivores and their forage. We investigated how Svalbard reindeer (Rangifer tarandus platyrhynchus) modify their late winter diets in response to long-term trends and interannual variation in forage availability and accessibility. By reconstructing their diets and foraging niches over a 17-year period (1995-2012) using serum δ13 C and δ15 N values, we found strong support for a temporal increase in the proportions of graminoids in the diets with a concurrent decline in the contributions of mosses. This dietary shift corresponds with graminoid abundance increases in the region and was associated with increases in population density, warmer summer temperatures and more frequent rain-on-snow (ROS) in winter. In addition, the variance in isotopic niche positions, breadths, and overlaps also supported a temporal shift in the foraging niche and a dietary response to extreme ROS events. Our long-term study highlights the mechanisms by which winter and summer climate changes cascade through vegetation shifts and herbivore population dynamics to alter the foraging niche of Svalbard reindeer. Although it has been anticipated that climate changes in the Svalbard region of the Arctic would be detrimental to this unique ungulate, our study suggests that environmental change is in a phase where conditions are improving for this subspecies at the northernmost edge of the Rangifer distribution.


Assuntos
Rena , Animais , Rena/fisiologia , Svalbard , Ecossistema , Espécies Reativas de Oxigênio , Estações do Ano , Regiões Árticas , Dieta , Mudança Climática
2.
BMC Genomics ; 22(1): 473, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34171993

RESUMO

BACKGROUND: Understanding the processes that lead to hybridization of wolves and dogs is of scientific and management importance, particularly over large geographical scales, as wolves can disperse great distances. However, a method to efficiently detect hybrids in routine wolf monitoring is lacking. Microsatellites offer only limited resolution due to the low number of markers showing distinctive allele frequencies between wolves and dogs. Moreover, calibration across laboratories is time-consuming and costly. In this study, we selected a panel of 96 ancestry informative markers for wolves and dogs, derived from the Illumina CanineHD Whole-Genome BeadChip (174 K). We designed very short amplicons for genotyping on a microfluidic array, thus making the method suitable also for non-invasively collected samples. RESULTS: Genotypes based on 93 SNPs from wolves sampled throughout Europe, purebred and non-pedigree dogs, and suspected hybrids showed that the new panel accurately identifies parental individuals, first-generation hybrids and first-generation backcrosses to wolves, while second- and third-generation backcrosses to wolves were identified as advanced hybrids in almost all cases. Our results support the hybrid identity of suspect individuals and the non-hybrid status of individuals regarded as wolves. We also show the adequacy of these markers to assess hybridization at a European-wide scale and the importance of including samples from reference populations. CONCLUSIONS: We showed that the proposed SNP panel is an efficient tool for detecting hybrids up to the third-generation backcrosses to wolves across Europe. Notably, the proposed genotyping method is suitable for a variety of samples, including non-invasive and museum samples, making this panel useful for wolf-dog hybrid assessments and wolf monitoring at both continental and different temporal scales.


Assuntos
Lobos , Animais , Cães , Europa (Continente) , Hibridização Genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Lobos/genética
3.
J Anim Breed Genet ; 138(2): 188-203, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33226152

RESUMO

Selection by breeders modifies the morphology, behaviour and performance of domesticated species. Here, we examined signs of selection in Finnhorse, the only native horse breed in Finland. We first searched divergent genomic regions between Finnhorses and other breeds, as well as between different breeding sections of the Finnhorse with data from Illumina Equine SNP70 BeadChip, and then studied several of the detected regions in more detail. We found altogether 35 common outlier SNPs between Finnhorses and other breeds using two different selection tests. Many of the SNPs were located close to genes affecting coat colour, performance, size, sugar metabolism, immune response and olfaction. We selected genes affecting coat colour (KIT, MITF, PMEL), performance (MSTN) and locomotion (DMRT3) for a more detailed examination. In addition, we looked for, and found, associations with height at withers and SNPs located close to gene LCORL. Among the four breeding sections of Finnhorses (harness trotters, riding horses, draught horses and pony-sized horses), a single SNP located close to the DMRT3 gene was significantly differentiated and only between harness trotters and pony-sized horses.


Assuntos
Cruzamento , Animais , Finlândia , Genoma , Genômica , Cavalos , Polimorfismo de Nucleotídeo Único
4.
BMC Genomics ; 21(1): 854, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267779

RESUMO

BACKGROUND: Numerous megafauna species from northern latitudes went extinct during the Pleistocene/Holocene transition as a result of climate-induced habitat changes. However, several ungulate species managed to successfully track their habitats during this period to eventually flourish and recolonise the holarctic regions. So far, the genomic impacts of these climate fluctuations on ungulates from high latitudes have been little explored. Here, we assemble a de-novo genome for the European moose (Alces alces) and analyse it together with re-sequenced nuclear genomes and ancient and modern mitogenomes from across the moose range in Eurasia and North America. RESULTS: We found that moose demographic history was greatly influenced by glacial cycles, with demographic responses to the Pleistocene/Holocene transition similar to other temperate ungulates. Our results further support that modern moose lineages trace their origin back to populations that inhabited distinct glacial refugia during the Last Glacial Maximum (LGM). Finally, we found that present day moose in Europe and North America show low to moderate inbreeding levels resulting from post-glacial bottlenecks and founder effects, but no evidence for recent inbreeding resulting from human-induced population declines. CONCLUSIONS: Taken together, our results highlight the dynamic recent evolutionary history of the moose and provide an important resource for further genomic studies.


Assuntos
Cervos , Variação Genética , Animais , DNA Mitocondrial/genética , Cervos/genética , Demografia , Europa (Continente) , América do Norte , Filogenia , Análise de Sequência de DNA
5.
Genet Sel Evol ; 51(1): 35, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262246

RESUMO

BACKGROUND: The Finnhorse was established as a breed more than 110 years ago by combining local Finnish landraces. Since its foundation, the breed has experienced both strong directional selection, especially for size and colour, and severe population bottlenecks that are connected with its initial foundation and subsequent changes in agricultural and forestry practices. Here, we used sequences of the mitochondrial control region and genomic single nucleotide polymorphisms (SNPs) to estimate the genetic diversity and differentiation of the four Finnhorse breeding sections: trotters, pony-sized horses, draught horses and riding horses. Furthermore, we estimated inbreeding and effective population sizes over time to infer the history of this breed. RESULTS: We found a high level of mitochondrial genetic variation and identified 16 of the 18 haplogroups described in present-day horses. Interestingly, one of these detected haplogroups was previously reported only in the Przewalski's horse. Female effective population sizes were in the thousands, but declines were evident at the times when the breed and its breeding sections were founded. By contrast, nuclear variation and effective population sizes were small (approximately 50). Nevertheless, inbreeding in Finnhorses was lower than in many other horse breeds. Based on nuclear SNP data, genetic differentiation among the four breeding sections was strongest between the draught horses and the three other sections (FST = 0.007-0.018), whereas based on mitochondrial DNA data, it was strongest between the trotters and the pony-sized and riding horses (ΦST = 0.054-0.068). CONCLUSIONS: The existence of a Przewalski's horse haplogroup in the Finnhorse provides new insights into the domestication of the horse, and this finding supports previous suggestions of a close relationship between the Finnhorse and eastern primitive breeds. The high level of mitochondrial DNA variation in the Finnhorse supports its domestication from a large number of mares but also reflects that its founding depended on many local landraces. Although inbreeding in Finnhorses was lower than in many other horse breeds, the small nuclear effective population sizes of each of its breeding sections can be considered as a warning sign, which warrants changes in breeding practices.


Assuntos
Variação Genética , Cavalos/genética , Animais , Cruzamento , DNA Mitocondrial , Feminino , Finlândia , Endogamia , Masculino , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Especificidade da Espécie
6.
BMC Ecol ; 17(1): 44, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258497

RESUMO

BACKGROUND: Carnivores are re-establishing in many human-populated areas, where their presence is often contentious. Reaching consensus on management decisions is often hampered by a dispute over the size of the local carnivore population. Understanding the reproductive dynamics and individual movements of the carnivores can provide support for management decisions, but individual-level information can be difficult to obtain from elusive, wide-ranging species. Non-invasive genetic sampling can yield such information, but makes subsequent reconstruction of population history challenging due to incomplete population coverage and error-prone data. Here, we combine a collaborative, volunteer-based sampling scheme with Bayesian pedigree reconstruction to describe the pack dynamics of an establishing grey wolf (Canis lupus) population in south-west Finland, where wolf breeding was recorded in 2006 for the first time in over a century. RESULTS: Using DNA extracted mainly from faeces collected since 2008, we identified 81 individual wolves and assigned credible full parentages to 70 of these and partial parentages to a further 9, revealing 7 breeding pairs. Individuals used a range of strategies to obtain breeding opportunities, including dispersal to established or new packs, long-distance migration and inheriting breeding roles. Gene flow occurred between all packs but inbreeding events were rare. CONCLUSIONS: These findings demonstrate that characterizing ongoing pack dynamics can provide detailed, locally-relevant insight into the ecology of contentious species such as the wolf. Involving various stakeholders in data collection makes these results more likely to be accepted as unbiased and hence reliable grounds for management decisions.


Assuntos
Conservação dos Recursos Naturais , Fluxo Gênico , Lobos/fisiologia , Animais , Teorema de Bayes , Coleta de Dados , Feminino , Finlândia , Masculino , Linhagem , Dinâmica Populacional , Lobos/genética
7.
Proc Biol Sci ; 282(1807): 20150092, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25904665

RESUMO

Recovery of natural populations occurs often with simultaneous or subsequent range expansions. According to population genetic theory, genetic structuring emerges at the expansion front together with decreasing genetic diversity, owing to multiple founder events. Thereupon, as the expansion proceeds and connectivity among populations is established, homogenization and a resurgence of genetic diversity are to be expected. Few studies have used a fine temporal scale combined with genetic sampling to track range expansions as they proceed in wild animal populations. As a natural experiment, the historical eradication of large terrestrial carnivores followed by their recovery and recolonization may facilitate empirical tests of these ideas. Here, using brown bear (Ursus arctos) as model species, we tested predictions from genetic theory of range expansion. Individuals from all over Finland were genotyped for every year between 1996 and 2010 using 12 validated autosomal microsatellite markers. A latitudinal shift of about 110 km was observed in the distribution and delineation of genetic clusters during this period. As the range expansion proceeded, we found, as theory predicts, that the degree of genetic structure decreased, and that both genetic variation and admixture increased. The genetic consequences of range expansions may first be detected after multiple generations, but we found major changes in genetic composition after just 1.5 generations, accompanied by population growth and increased migration. These rapid genetic changes suggest an ongoing concerted action of geographical and demographic expansion combined with substantial immigration of bears from Russia during the recovery of brown bears within the large ecosystem of northern Europe.


Assuntos
Distribuição Animal , Ursidae/genética , Animais , Carnivoridade , Finlândia , Fluxo Gênico , Variação Genética , Repetições de Microssatélites , Crescimento Demográfico
8.
Mol Ecol ; 24(24): 6041-60, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26769404

RESUMO

High-resolution, male-inherited Y-chromosomal markers are a useful tool for population genetic analyses of wildlife species, but to date have only been applied in this context to relatively few species besides humans. Using nine Y-chromosomal STRs and three Y-chromosomal single nucleotide polymorphism markers (Y-SNPs), we studied whether male gene flow was important for the recent recovery of the brown bear (Ursus arctos) in Northern Europe, where the species declined dramatically in numbers and geographical distribution during the last centuries but is expanding now. We found 36 haplotypes in 443 male extant brown bears from Sweden, Norway, Finland and northwestern Russia. In 14 individuals from southern Norway from 1780 to 1920, we found two Y chromosome haplotypes present in the extant population as well as four Y chromosome haplotypes not present among the modern samples. Our results suggested major differences in genetic connectivity, diversity and structure between the eastern and the western populations in Northern Europe. In the west, our results indicated that the recovered population originated from only four male lineages, displaying pronounced spatial structuring suggestive of large-scale population size increase under limited male gene flow within the western subpopulation. In the east, we found a contrasting pattern, with high haplotype diversity and admixture. This first population genetic analysis of male brown bears shows conclusively that male gene flow was not the main force of population recovery.


Assuntos
Fluxo Gênico , Genética Populacional , Ursidae/genética , Cromossomo Y/genética , Distribuição Animal , Animais , Finlândia , Haplótipos , Noruega , Polimorfismo de Nucleotídeo Único , Federação Russa , Suécia
9.
J Hered ; 106(6): 745-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26464090

RESUMO

Because male gene flow cannot easily be estimated directly in many organisms, Hedrick et al. (2013) provided an approach to estimate male gene flow given estimates of diploid nuclear and female differentiation. This approach appears to work well when there is lower female than male gene flow. However, in a tiger data set there was less female differentiation observed as estimated by mitochondrial DNA than expected given the observed overall nuclear diploid differentiation. To analyze these data, we suggest an alternative approach which allows incorporation of sex-specific gene flow and sex-specific effective population size. We find that the pattern of differentiation observed in tigers was consistent with a lower male than female effective population size using this alternative approach. Further, this finding is consistent with observed data in tigers where the male effective population size was 33% that of the female effective population size.


Assuntos
Fluxo Gênico , Genética Populacional , Tigres/genética , Animais , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Feminino , Masculino , Modelos Genéticos , Densidade Demográfica
10.
BMC Evol Biol ; 14: 64, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24678616

RESUMO

BACKGROUND: Many western European carnivore populations became almost or completely eradicated during the last ~200 years, but are now recovering. Extirpation of wolves started in Finland in the 19th century, and for more than 150 years the population size of wolves has remained small. To investigate historical patterns of genetic variation, we extracted DNA from 114 wolf samples collected in zoological museums over the last ~150 years. Fifteen microsatellite loci were used to look at genotypic variation in this historical sample. Additionally, we amplified a 430 bp sequence of mtDNA control region from the same samples. Contemporary wolf samples (N = 298) obtained after the population recovery in the mid-1990s, were used as a reference. RESULTS: Our analyses of mtDNA revealed reduced variation in the mtDNA control region through the loss of historical haplotypes observed prior to wolf declines. Heterozygosity at autosomal microsatellite loci did not decrease significantly. However, almost 20% of microsatellite alleles were unique to wolves collected before the 1960s. The genetic composition of the population changed gradually with the largest changes occurring prior to 1920. Half of the oldest historical samples formed a distinguishable genetic cluster not detected in the modern-day Finnish or Russian samples, and might therefore represent northern genetic variation lost from today's gene pool. Point estimates of Ne were small (13.2 and 20.5) suggesting population fragmentation. Evidence of a genetic population bottleneck was also detected. CONCLUSIONS: Our genetic analyses confirm changes in the genetic composition of the Finnish wolf population through time, despite the geographic interconnectivity to a much larger population in Russia. Our results emphasize the need for restoration of the historical connectivity between the present wolf populations to secure long-term viability. This might be challenging, however, because the management policies between Western and Eastern Europe often differ greatly. Additionally, wolf conservation is still a rather controversial issue, and anthropogenic pressure towards wolves remains strong.


Assuntos
Evolução Biológica , Filogenia , Lobos/classificação , Lobos/genética , Animais , DNA Mitocondrial/genética , Finlândia , Fósseis , Variação Genética , Genética Populacional , Repetições de Microssatélites , Densidade Demográfica
11.
BMC Ecol ; 14: 22, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25005257

RESUMO

BACKGROUND: Small, genetically uniform populations may face an elevated risk of extinction due to reduced environmental adaptability and individual fitness. Fragmentation can intensify these genetic adversities and, therefore, dispersal and gene flow among subpopulations within an isolated population is often essential for maintaining its viability. Using microsatellite and mtDNA data, we examined genetic diversity, spatial differentiation, interregional gene flow, and effective population sizes in the critically endangered Saimaa ringed seal (Phoca hispida saimensis), which is endemic to the large but highly fragmented Lake Saimaa in southeastern Finland. RESULTS: Microsatellite diversity within the subspecies (HE = 0.36) ranks among the lowest thus far recorded within the order Pinnipedia, with signs of ongoing loss of individual heterozygosity, reflecting very low effective subpopulation sizes. Bayesian assignment analyses of the microsatellite data revealed clear genetic differentiation among the main breeding areas, but interregional structuring was substantially weaker in biparentally inherited microsatellites (FST = 0.107) than in maternally inherited mtDNA (FST = 0.444), indicating a sevenfold difference in the gene flow mediated by males versus females. CONCLUSIONS: Genetic structuring in the population appears to arise from the joint effects of multiple factors, including small effective subpopulation sizes, a fragmented lacustrine habitat, and behavioural dispersal limitation. The fine-scale differentiation found in the landlocked Saimaa ringed seal is especially surprising when contrasted with marine ringed seals, which often exhibit near-panmixia among subpopulations separated by hundreds or even thousands of kilometres. Our results demonstrate that population structures of endangered animals cannot be predicted based on data on even closely related species or subspecies.


Assuntos
Espécies em Perigo de Extinção , Variação Genética , Genética Populacional , Focas Verdadeiras/genética , Distribuição Animal , Animais , Teorema de Bayes , Análise por Conglomerados , DNA Mitocondrial/genética , Feminino , Finlândia , Água Doce , Fluxo Gênico , Masculino , Repetições de Microssatélites , Modelos Genéticos , Densidade Demográfica , Análise de Sequência de DNA
12.
Ecol Evol ; 14(4): e11224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571801

RESUMO

For many aquatic and semiaquatic mammal, amphibian and fish species, environmental DNA (eDNA) methods are employed to detect species distribution and to monitor their presence, but eDNA is much less employed for avian species. Here, we developed primers for the detection of true geese and swan species using eDNA and optimised a PCR protocol for eDNA. We selected taiga bean goose (Anser fabalis fabalis) as our focal (sub)species and sampled water from lakes, from which the presence of taiga bean goose was visually confirmed. To test, if taiga bean goose DNA could be detected among DNA of other goose species, we similarly sampled eDNA from a zoo pond housing several Anatidae species. We were able to detect taiga bean goose DNA in all but one of the tested lakes, including the zoo pond. The primers developed are not species-specific, but rather specific to the genus Anser, due to the close relatedness of Anser species, which prevented the development of species-specific primers and the use of, for example, quantitative PCR. We also developed eDNA primers for Branta species and Cygnus species and tested these primers using the same samples. Canada goose (B. canadensis) and barnacle goose (B. leucopsis) DNA were only detected in the zoo pond (in which they were present), as the sampled natural lakes fall outside the range of these species. We detected whooper swan (C. cygnus) DNA in three lakes and the zoo pond (in which the species was present). The eDNA method presented here provides a potential means to monitor elusive goose species and to study the co-occurrence of large waterfowl.

13.
Sci Rep ; 14(1): 4946, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418893

RESUMO

The so-called man-eating wolves of Turku, a pack of three wolves, reportedly killed 22 children in South-Western Finland in 1880-1881. Enormous efforts were carried out to eradicate them. In January 1882 the last remaining wolf was killed. Since then, there has been considerable debate regarding the validity and extent of the man-eating behaviour. This study aims to clarify whether man-eating behaviour can be observed from the remains of these wolves. One of the wolves was mounted in 1882 and is on display at St. Olaf's school in Turku, enabling us to collect hair keratin samples. Additionally, hair keratin was collected from two other suspected man-eaters. We analysed carbon (δ13C) and nitrogen (δ15N) stable isotope values to study the wolf's diet during the last months of its life. Samples from seven temporally concurrent wolves were used to construct reference values. Our analyses indicated that δ15N values of suspected man-eaters were relatively low compared to the reference sample. We could not detect clear trends in isotope ratios associated with potential man-eating behavior. We believe that this lack of distinctive patterns can be explained by the relatively minor role that man-eating played in their overall diet.


Assuntos
Nitrogênio , Lobos , Animais , Criança , Humanos , Carbono , Queratinas Específicas do Cabelo , Isótopos de Nitrogênio/análise , Isótopos de Carbono/análise , Dieta
14.
Ecol Evol ; 13(1): e9720, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699566

RESUMO

The Saimaa ringed seal (Pusa hispida saimensis) is endemic to Lake Saimaa in Finland. The subspecies is thought to have originated when parts of the ringed seal population of the Baltic region were trapped in lakes emerging due to postglacial bedrock rebound around 9000 years ago. During the 20th century, the population experienced a drastic human-induced bottleneck. Today encompassing a little over 400 seals with extremely low genetic diversity, it is classified as endangered. We sequenced sections of the mitochondrial control region from 60 up to 125-years-old museum specimens of the Saimaa ringed seal. The generated dataset was combined with publicly available sequences. We studied how genetic variation has changed through time in this subspecies and how it is phylogenetically related to other ringed seal populations from the Baltic Sea, Lake Ladoga, North America, Svalbard, and the White Sea. We observed temporal fluctuations in haplotype frequencies and loss of haplotypes accompanied by a recent reduction in female effective population size. In apparent contrast with the traditionally held view of the Baltic origin of the population, the Saimaa ringed seal mtDNA variation also shows affinities to North American ringed seals. Our results suggest that the Saimaa ringed seal has experienced recent genetic drift associated with small population size. The results further suggest that extant Baltic ringed seal is not representative of the ancestral population of the Saimaa ringed seal, which calls for re-evaluation of the deep history of this subspecies.

15.
iScience ; 26(8): 107307, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37559898

RESUMO

The Sicilian wolf remained isolated in Sicily from the end of the Pleistocene until its extermination in the 1930s-1960s. Given its long-term isolation on the island and distinctive morphology, the genetic origin of the Sicilian wolf remains debated. We sequenced four nuclear genomes and five mitogenomes from the seven existing museum specimens to investigate the Sicilian wolf ancestry, relationships with extant and extinct wolves and dogs, and diversity. Our results show that the Sicilian wolf is most closely related to the Italian wolf but carries ancestry from a lineage related to European Eneolithic and Bronze Age dogs. The average nucleotide diversity of the Sicilian wolf was half of the Italian wolf, with 37-50% of its genome contained in runs of homozygosity. Overall, we show that, by the time it went extinct, the Sicilian wolf had high inbreeding and low-genetic diversity, consistent with a population in an insular environment.

16.
Mol Ecol ; 21(14): 3474-88, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22680614

RESUMO

Noninvasively collected genetic data can be used to analyse large-scale connectivity patterns among populations of large predators without disturbing them, which may contribute to unravel the species' roles in natural ecosystems and their requirements for long-term survival. The demographic history of brown bears (Ursus arctos) in Northern Europe indicates several extinction and recolonization events, but little is known about present gene flow between populations of the east and west. We used 12 validated microsatellite markers to analyse 1580 hair and faecal samples collected during six consecutive years (2005-2010) in the Pasvik Valley at 70°N on the border of Norway, Finland and Russia. Our results showed an overall high correlation between the annual estimates of population size (N(c) ), density (D), effective size (N(e) ) and N(e) /N(c) ratio. Furthermore, we observed a genetic heterogeneity of ∼0.8 and high N(e) /N(c) ratios of ∼0.6, which suggests gene flow from the east. Thus, we expanded the population genetic study to include Karelia (Russia, Finland), Västerbotten (Sweden) and Troms (Norway) (477 individuals in total) and detected four distinct genetic clusters with low migration rates among the regions. More specifically, we found that differentiation was relatively low from the Pasvik Valley towards the south and east, whereas, in contrast, moderately high pairwise F(ST) values (0.91-0.12) were detected between the east and the west. Our results indicate ongoing limits to gene flow towards the west, and the existence of barriers to migration between eastern and western brown bear populations in Northern Europe.


Assuntos
Fluxo Gênico , Genética Populacional , Ursidae/genética , Animais , Finlândia , Variação Genética , Endogamia , Desequilíbrio de Ligação , Repetições de Microssatélites , Noruega , Densidade Demográfica , Federação Russa , Suécia
17.
Ecol Evol ; 12(1): e8547, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127046

RESUMO

The population numbers of taiga bean goose (Anser fabalis fabalis) have halved during recent decades. Since this subspecies is hunted throughout most of its range, the decline is of management concern. Knowledge of the genetic population structure and diversity is important for guiding management and conservation efforts. Genetically unique subpopulations might be hunted to extinction if not managed separately, and any inbreeding depression or lack of genetic diversity may affect the ability to adapt to changing environments and increase extinction risk. We used microsatellite and mitochondrial DNA markers to study the genetic population structure and diversity among taiga bean geese breeding within the Central flyway management unit using non-invasively collected feathers. We found some genetic structuring with the maternally inherited mitochondrial DNA between four geographic regions (ɸ ST = 0.11-0.20) but none with the nuclear microsatellite markers (all pairwise F ST-values = 0.002-0.005). These results could be explained by female natal philopatry and male-biased dispersal, which completely homogenizes the nuclear genome. Therefore, the population could be managed as a single unit. Genetic diversity was still at a moderate level (average H E = 0.69) and there were no signs of past population size reductions, although significantly positive inbreeding coefficients in all sampling sites (F IS = 0.05-0.10) and high relatedness values (r = 0.60-0.86) between some individuals could indicate inbreeding. In addition, there was evidence of either incomplete lineage sorting or introgression from the pink-footed goose (Anser brachyrhynchus). The current population is not under threat by genetic impoverishment but monitoring in the future is desirable.

18.
PLoS One ; 17(5): e0267609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35536786

RESUMO

The wolverine (Gulo gulo) in Finland has undergone significant population declines in the past. Since major histocompatibility complex (MHC) genes encode proteins involved in pathogen recognition, the diversity of these genes provides insights into the immunological fitness of regional populations. We sequenced 862 amplicons (242 bp) of MHC class II DRB exon 2 from 32 Finnish wolverines and identified 11 functional alleles and three pseudogenes. A molecular phylogenetic analysis indicated trans-species polymorphism, and PAML and MEME analyses indicated positive selection, suggesting that the Finnish wolverine DRB genes have evolved under balancing and positive selection. In contrast to DRB gene analyses in other species, allele frequencies in the Finnish wolverines clearly indicated the existence of two regional subpopulations, congruent with previous studies based on neutral genetic markers. In the Finnish wolverine, rapid population declines in the past have promoted genetic drift, resulting in a lower genetic diversity of DRB loci, including fewer alleles and positively selected sites, than other mustelid species analyzed previously. Our data suggest that the MHC region in the Finnish wolverine population was likely affected by a recent bottleneck.


Assuntos
Carnívoros , Mustelidae , Alelos , Animais , Carnívoros/genética , Finlândia , Frequência do Gene , Genes MHC da Classe II , Variação Genética , Mustelidae/genética , Filogenia
19.
Mol Ecol Resour ; 22(2): 803-822, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34562055

RESUMO

To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.


Assuntos
Artrópodes , Animais , Artrópodes/classificação , Biodiversidade , Código de Barras de DNA Taxonômico , Finlândia , Biblioteca Gênica
20.
Evol Appl ; 14(3): 721-734, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767747

RESUMO

Hybridization and admixture can threaten the genetic integrity of populations and be of particular concern to endangered species. Hybridization between grey wolves and dogs has been documented in many wolf populations worldwide and is a prominent example of human-mediated hybridization between a domesticated species and its wild relative. We analysed whole-genome sequences from >200 wolves and >100 dogs to study admixture in Fennoscandian wolf populations. A principal component analysis of genetic variation and admixture showed that wolves and dogs were well-separated, without evidence for introgression. Analyses of local ancestry revealed that wolves had <1% mixed ancestry, levels comparable to the degree of mixed ancestry in many dogs, and likely not resulting from recent wolf-dog hybridization. We also show that the founders of the Scandinavian wolf population were genetically inseparable from Finnish and Russian Karelian wolves, pointing at the geographical origin of contemporary Scandinavian wolves. Moreover, we found Scandinavian-born animals among wolves sampled in Finland, demonstrating bidirectional gene flow between the Scandinavian Peninsula and eastern countries. The low incidence of admixture between wolves and dogs in Fennoscandia may be explained by the fact that feral dogs are rare in this part of Europe and that careful monitoring and management act to remove hybrids before they backcross into wolf populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA