Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(4): 2398-2406, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35119274

RESUMO

Biodegradable plastics can reach full degradation when disposed of appropriately and thus alleviate plastic pollution caused by conventional plastics. However, additives can be released into the environment during degradation and the fate of these additives can be affected by the degradation process. Here, we characterized TiO2 particles released from a biodegradable plastic mulch during composting and studied the transport of the mulch-released TiO2 particles in inert sand and agricultural soil columns under unsaturated flow conditions. TiO2 particles (238 nm major axis and 154 nm minor axis) were released from the biodegradable plastic mulch in both single-particle and cluster forms. The mulch-released TiO2 particles were fully retained in unsaturated soil columns due to attachment onto the solid-water interface and straining. However, in unsaturated sand columns, the mulch-released TiO2 particles were highly mobile. A comparison with the pristine TiO2 revealed that the mobility of the mulch-released TiO2 particles was enhanced by humic acid present in the compost residues, which blocked attachment sites and imposed steric repulsion. This study demonstrates that TiO2 particles can be released during composting of biodegradable plastics and the transport potential of the plastic-released TiO2 particles in the terrestrial environment can be enhanced by compost residues.


Assuntos
Plásticos Biodegradáveis , Compostagem , Plásticos , Areia , Solo , Titânio
2.
Water Res ; 239: 120018, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201372

RESUMO

Plastic pollution caused by conventional plastics has promoted the development and use of biodegradable plastics. However, biodegradable plastics do not degrade readily in water; instead, they can generate micro- and nanoplastics. Compared to microplastics, nanoplastics are more likely to cause negative impacts to the aquatic environment due to their smaller size. The impacts of biodegradable nanoplastics highly depend on their aggregation behavior and colloidal stability, which still remain unknown. Here, we studied the aggregation kinetics of biodegradable nanoplastics made of polybutylene adipate co-terephthalate (PBAT) in NaCl and CaCl2 solutions as well as in natural waters before and after weathering. We further studied the effect of proteins on aggregation kinetics with both negative-charged bovine serum albumin (BSA) and positive-charged lysozyme (LSZ). For pristine PBAT nanoplastics (before weathering), Ca2+ destabilized nanoplastic suspensions more aggressively than Na+, with the critical coagulation concentration being 20 mM in CaCl2 vs 325 mM in NaCl. Both BSA and LSZ promoted the aggregation of pristine PBAT nanoplastics, and LSZ showed a more pronounced effect. However, no aggregation was observed for weathered PBAT nanoplastics under most experimental conditions. Further stability tests demonstrated that pristine PBAT nanoplastics aggregated substantially in seawater, but not in freshwater, and only slightly in soil pore water; while weathered PBAT nanoplastics remained stable in all natural waters. These results suggest that biodegradable nanoplastics, especially weathered biodegradable nanoplastics, are highly stable in the aquatic environment, even in the marine environment.


Assuntos
Plásticos Biodegradáveis , Plásticos , Microplásticos , Cloreto de Sódio , Cloreto de Cálcio , Soroalbumina Bovina , Água
3.
NanoImpact ; 31: 100474, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37419450

RESUMO

Micro and nanoplastics (MPs and NPs, respectively) in agricultural soil ecosystems represent a pervasive global environmental concern, posing risks to soil biota, hence soil health and food security. This review provides a comprehensive and current summary of the literature on sources and properties of MNPs in agricultural ecosystems, methodology for the isolation and characterization of MNPs recovered from soil, MNP surrogate materials that mimic the size and properties of soil-borne MNPs, and transport of MNPs through the soil matrix. Furthermore, this review elucidates the impacts and risks of agricultural MNPs on crops and soil microorganisms and fauna. A significant source of MPs in soil is plasticulture, involving the use of mulch films and other plastic-based implements to provide several agronomic benefits for specialty crop production, while other sources of MPs include irrigation water and fertilizer. Long-term studies are needed to address current knowledge gaps of formation, soil surface and subsurface transport, and environmental impacts of MNPs, including for MNPs derived from biodegradable mulch films, which, although ultimately undergoing complete mineralization, will reside in soil for several months. Because of the complexity and variability of agricultural soil ecosystems and the difficulty in recovering MNPs from soil, a deeper understanding is needed for the fundamental relationships between MPs, NPs, soil biota and microbiota, including ecotoxicological effects of MNPs on earthworms, soil-dwelling invertebrates, and beneficial soil microorganisms, and soil geochemical attributes. In addition, the geometry, size distribution, fundamental and chemical properties, and concentration of MNPs contained in soils are required to develop surrogate MNP reference materials that can be used across laboratories for conducting fundamental laboratory studies.

4.
J Vis Exp ; (185)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35969107

RESUMO

Microplastics (MPs) and nanoplastics (NPs) dispersed in agricultural ecosystems can pose a severe threat to biota in soil and nearby waterways. In addition, chemicals such as pesticides adsorbed by NPs can harm soil organisms and potentially enter the food chain. In this context, agriculturally utilized plastics such as plastic mulch films contribute significantly to plastic pollution in agricultural ecosystems. However, most fundamental studies of fate and ecotoxicity employ idealized and poorly representative MP materials, such as polystyrene microspheres. Therefore, as described herein, we developed a lab-scale multi-step procedure to mechanically form representative MPs and NPs for such studies. The plastic material was prepared from commercially available plastic mulch films of polybutyrate adipate-co-terephthalate (PBAT) that were embrittled through either cryogenic treatment (CRYO) or environmental weathering (W), and from untreated PBAT pellets. The plastic materials were then treated by mechanical milling to form MPs with a size of 46-840 µm, mimicking the abrasion of plastic fragments by wind and mechanical machinery. The MPs were then sieved into several size fractions to enable further analysis. Finally, the 106 µm sieve fraction was subjected to wet grinding to generate NPs of 20-900 nm, a process that mimics the slow size reduction process for terrestrial MPs. The dimensions and the shape for MPs were determined through image analysis of stereomicrographs, and dynamic light scattering (DLS) was employed to assess particle size for NPs. MPs and NPs formed through this process possessed irregular shapes, which is in line with the geometric properties of MPs recovered from agricultural fields. Overall, this size reduction method proved efficient for forming MPs and NPs composed of biodegradable plastics such as polybutylene adipate-co-terephthalate (PBAT), representing mulch materials used for agricultural specialty crop production.


Assuntos
Ecossistema , Microplásticos , Adipatos , Emprego , Plásticos , Solo
5.
PLoS One ; 15(7): e0235893, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32692771

RESUMO

Terrestrial nanoplastics (NPs) pose a serious threat to agricultural food production systems due to the potential harm of soil-born micro- and macroorganisms that promote soil fertility and ability of NPs to adsorb onto and penetrate into vegetables and other crops. Very little is known about the dispersion, fate and transport of NPs in soils. This is because of the challenges of analyzing terrestrial NPs by conventional microscopic techniques due to the low concentrations of NPs and absence of optical transparency in these systems. Herein, we investigate the potential utility of small-angle neutron scattering (SANS) and Ultra SANS (USANS) to probe the agglomeration behavior of NPs prepared from polybutyrate adipate terephthalate, a prominent biodegradable plastic used in agricultural mulching, in the presence of vermiculite, an artificial soil. SANS with the contrast matching technique was used to study the aggregation of NPs co-dispersed with vermiculite in aqueous media. We determined the contrast match point for vermiculite was 66% D2O / 33% H2O. At this condition, the signal for vermiculite was ~50-100%-fold lower that obtained using neat H2O or D2O as solvent. According to SANS and USANS, smaller-sized NPs (50 nm) remained dispersed in water and did not undergo size reduction or self-agglomeration, nor formed agglomerates with vermiculite. Larger-sized NPs (300-1000 nm) formed self-agglomerates and agglomerates with vermiculite, demonstrating their significant adhesion with soil. However, employment of convective transport (simulated by ex situ stirring of the slurries prior to SANS and USANS analyses) reduced the self-agglomeration, demonstrating weak NP-NP interactions. Convective transport also led to size reduction of the larger-sized NPs. Therefore, this study demonstrates the potential utility of SANS and USANS with contrast matching technique for investigating behavior of terrestrial NPs in complex soil systems.


Assuntos
Nanoestruturas/análise , Poliésteres/análise , Poluentes do Solo/análise , Solo/química , Nanoestruturas/química , Difração de Nêutrons , Poliésteres/química , Espalhamento a Baixo Ângulo , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA