Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lasers Med Sci ; 35(6): 1315-1321, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31741149

RESUMO

Diabetes mellitus (DM) is a metabolic disorder characterized by high blood glucose level (hyperglycemia). Type 2 diabetes mellitus is mainly featured by low cell sensitivity towards insulin stimulation, caused by ectopic fat storage. Insulin resistance can be quantified from high number of HOMA-IR index and observed from glucose transporter 4 (GLUT-4) translocation on membrane of skeletal muscle cells. Combined treatment of electric field, magnetic field, and infrared ray have potential to reduce insulin resistance due to improving blood circulation and increasing intracellular Ca2+ level. The aim of study was to determine the effect of electric field, magnetic field, and infrared ray combination to lower insulin resistance in the type II diabetic model of Mus musculus. This study used 30 adult male mice strain BALB/c. Diabetes was induced using high-fat diet/streptozotocin method until random blood glucose level reached > 200 mg/dL. Diabetic mice were then exposed to electrical field (static and dynamic), magnetic field (static and induce), and infrared ray (with or without infrared ray) combination therapy 15 min daily for 28 days. Fasting blood glucose level, plasma insulin level, HOMA-IR index, and membrane GLUT-4 density after treatment were analyzed statistically at α = 0.05. Result showed that exposure combination of electrical field, magnetic field, and infrared were found to be able to lower fasting blood glucose level and HOMA-IR index significantly, but plasma insulin level and GLUT-4 density were not found to be significantly different compared to diabetic control. Based on current study result, the best combination for reducing insulin resistance in diabetic mice is BsEsI (combination of static magnetic field (Bs), static electric field (Es), with infrared (I)), indicated by lowest HOMA-IR compared to other groups. Exposure to combination of magnetic field, electrical field, and infrared resulted in lowering fasting blood glucose level and HOMA-IR index in diabetic mice, indicating reduced insulin resistance.


Assuntos
Diabetes Mellitus Experimental/terapia , Eletricidade , Transportador de Glucose Tipo 4/metabolismo , Raios Infravermelhos , Resistência à Insulina , Campos Magnéticos , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Modelos Animais de Doenças , Humanos , Insulina/sangue , Masculino , Camundongos Endogâmicos BALB C , Estreptozocina
2.
Lasers Med Sci ; 34(5): 929-937, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30413898

RESUMO

Candida albicans is a normal flora caused fungal infections and has the ability to form biofilms. The aim of this study was to improve the antifungal effect of silver nanoparticles (AgNPs) and the light source for reducing the biofilm survival of C. albicans. AgNPs were prepared by silver nitrate (AgNO3) and trisodium citrate (Na3C6H5O7). To determine the antifungal effect of treatments on C. albicans biofilm, samples were distributed into four groups; L + P+ was treatment with laser irradiation and AgNPs; L + P- was treatment with laser irradiation only; L - P+ was treatment with AgNPs only (control positive); L - P- was no treatment with laser irradiation or AgNPs (control negative). The growth of fungi had been monitored by measuring the optical density at 405 nm with ELISA reader. The particle size of AgNPs was measured by using (particle size analyzer) and the zeta potential of AgNPs was measured by using Malvern zetasizer. The PSA test showed that the particle size of AgNPs was distributed between 7.531-5559.644 nm. The zeta potentials were found lower than - 30 mV with pH of 7, 9 or 11. The reduction percentage was analyzed by ANOVA test. The highest reduction difference was given at a lower level irradiation because irradiation with a density energy of 6.13 ± 0.002 J/cm2 resulted in the biofilm reduction of 7.07 ± 0.23% for the sample without AgNPs compared to the sample with AgNPs that increased the biofilm reduction of 64.48 ± 0.07%. The irradiation with a 450-nm light source had a significant fungicidal effect on C. albicans biofilm. The combination of light source and AgNPs provides an increase of biofilm reduction compared to the light source itself.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Candida albicans/efeitos da radiação , Lasers Semicondutores , Nanopartículas Metálicas/química , Prata/farmacologia , Candida albicans/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA