RESUMO
Adaptive immune recognition is mediated by the binding of peptide-human leukocyte antigen complexes by T cells. Positive selection of T cells in the thymus is a fundamental step in the generation of a responding T cell repertoire: only those T cells survive that recognize human peptides presented on the surface of cortical thymic epithelial cells. We propose that while this step is essential for optimal immune function, the process results in a defective T cell repertoire because it is mediated by self-peptides. To test our hypothesis, we focused on amino acid motifs of peptides in contact with T cell receptors. We found that motifs rarely or not found in the human proteome are unlikely to be recognized by the immune system just like the ones that are not expressed in cortical thymic epithelial cells or not presented on their surface. Peptides carrying such motifs were especially dissimilar to human proteins. Importantly, we present our main findings on two independent T cell activation datasets and directly demonstrate the absence of naïve T cells in the repertoire of healthy individuals. We also show that T cell cross-reactivity is unable to compensate for the absence of positively selected T cells. Additionally, we show that the proposed mechanism could influence the risk for different infectious diseases. In sum, our results suggest a side effect of T cell positive selection, which could explain the nonresponsiveness to many nonself peptides and could improve the understanding of adaptive immune recognition.
Assuntos
Imunidade Adaptativa/imunologia , Tolerância a Antígenos Próprios/imunologia , Linfócitos T/imunologia , Bases de Dados Factuais , Humanos , Ativação Linfocitária/imunologia , Peptídeos/imunologia , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/metabolismoRESUMO
Human leukocyte antigen class I (HLA-I) genes shape our immune response against pathogens and cancer. Certain HLA-I variants can bind a wider range of peptides than others, a feature that could be favorable against a range of viral diseases. However, the implications of this phenomenon on cancer immune response are unknown. Here we quantified peptide repertoire breadth (or promiscuity) of a representative set of HLA-I alleles and found that patients with cancer who were carrying HLA-I alleles with high peptide-binding promiscuity have significantly worse prognosis after immune checkpoint inhibition. This can be explained by a reduced capacity of the immune system to discriminate tumor neopeptides from self-peptides when patients carry highly promiscuous HLA-I variants, shifting the regulation of tumor-infiltrating T cells from activation to tolerance. In summary, HLA-I peptide-binding specificity shapes neopeptide immunogenicity and the self-immunopeptidome repertoire in an antagonistic manner, and could underlie a negative trade-off between antitumor immunity and genetic susceptibility to viral infections.