Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proteomics ; : e2300620, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602241

RESUMO

Mild cognitive impairment (MCI) is an early stage of memory loss that affects cognitive abilities with the aging of individuals, such as language or visual/spatial comprehension. MCI is considered a prodromal phase of more complicated neurodegenerative diseases such as Alzheimer's. Therefore, accurate diagnosis and better understanding of the disease prognosis will facilitate prevention of neurodegeneration. However, the existing diagnostic methods fail to provide precise and well-timed diagnoses, and the pathophysiology of MCI is not fully understood. Alterations of the serum N-glycoproteome expression could represent an essential contributor to the overall pathophysiology of neurodegenerative diseases and be used as a potential marker to assess MCI diagnosis using less invasive procedures. In this approach, we identified N-glycopeptides with different expressions between healthy and MCI patients from serum glycoproteins. Seven of the N-glycopeptides showed outstanding AUC values, among them the antithrombin-III Asn224 + 4-5-0-2 with an AUC value of 1.00 and a p value of 0.0004. According to proteomics and ingenuity pathway analysis (IPA), our data is in line with recent publications, and the glycoproteins carrying the identified N-sites play an important role in neurodegeneration.

2.
Anal Bioanal Chem ; 416(18): 4071-4082, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38958703

RESUMO

The study of glycoproteomics presents a set of unique challenges, primarily due to the low abundance of glycopeptides and their intricate heterogeneity, which is specific to each site. Glycoproteins play a crucial role in numerous biological functions, including cell signaling, adhesion, and intercellular communication, and are increasingly recognized as vital markers in the diagnosis and study of various diseases. Consequently, a quantitative approach to glycopeptide research is essential. One effective strategy to address this need is the use of multiplex glycopeptide labeling. By harnessing the synergies of 15N metabolic labeling via the isotopic detection of amino sugars with glutamine (IDAWG) technique for glycan parts and tandem mass tag (TMT)pro labeling for peptide backbones, we have developed a method that allows for the accurate quantification and comparison of multiple samples simultaneously. The adoption of the liquid chromatography-synchronous precursor selection (LC-SPS-MS3) technique minimizes fragmentation interference, enhancing data reliability, as shown by a 97% TMT labeling efficiency. This method allows for detailed, high-throughput analysis of 32 diverse samples from 231BR cell lines, using both 14N and 15N glycopeptides at a 1:1 ratio. A key component of our methodology was the precise correction for isotope and TMTpro distortions, significantly improving quantification accuracy to less than 5% distortion. This breakthrough enhances the efficiency and accuracy of glycoproteomic studies, increasing our understanding of glycoproteins in health and disease. Its applicability to various cancer cell types sets a new standard in quantitative glycoproteomics, enabling deeper investigation into glycopeptide profiles.


Assuntos
Glicopeptídeos , Marcação por Isótopo , Isótopos de Nitrogênio , Espectrometria de Massas em Tandem , Glicopeptídeos/análise , Glicopeptídeos/metabolismo , Humanos , Isótopos de Nitrogênio/análise , Espectrometria de Massas em Tandem/métodos , Marcação por Isótopo/métodos , Proteômica/métodos , Linhagem Celular Tumoral , Cromatografia Líquida/métodos
3.
Electrophoresis ; 43(1-2): 370-387, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614238

RESUMO

Protein glycosylation is one of the most common posttranslational modifications, and plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, host-pathogen interaction, and protein stability. Glycoproteomics is a proteomics subfield dedicated to identifying and characterizing the glycans and glycoproteins in a given cell or tissue. Aberrant glycosylation has been associated with various diseases such as Alzheimer's disease, viral infections, inflammation, immune deficiencies, congenital disorders, and cancers. However, glycoproteomic analysis remains challenging because of the low abundance, site-specific heterogeneity, and poor ionization efficiency of glycopeptides during LC-MS analyses. Therefore, the development of sensitive and accurate approaches to efficiently characterize protein glycosylation is crucial. Methods such as metabolic labeling, enrichment, and derivatization of glycopeptides, coupled with different mass spectrometry techniques and bioinformatics tools, have been developed to achieve sophisticated levels of quantitative and qualitative analyses of glycoproteins. This review attempts to update the recent developments in the field of glycoproteomics reported between 2017 and 2021.


Assuntos
Glicopeptídeos , Proteômica , Cromatografia Líquida , Glicopeptídeos/química , Glicosilação , Espectrometria de Massas/métodos , Proteômica/métodos
4.
J Sep Sci ; 44(1): 403-425, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33090644

RESUMO

Changes in the glycome of human proteins and cells are associated with the progression of multiple diseases such as Alzheimer's, diabetes mellitus, many types of cancer, and those caused by viruses. Consequently, several studies have shown essential modifications to the isomeric glycan moieties for diseases in different stages. However, the elucidation of extensive isomeric glycan profiles remains challenging because of the lack of analytical techniques with sufficient resolution power to separate all glycan and glycopeptide iso-forms. Therefore, the development of sensitive and accurate approaches for the characterization of all the isomeric forms of glycans and glycopeptides is essential to tracking the progression of pathology in glycoprotein-related diseases. This review describes the isomeric separation achievements reported in glycomics and glycoproteomics in the last decade. It focuses on the mass spectrometry-based analytical strategies, stationary phases, and derivatization techniques that have been developed to enhance the separation mechanisms in liquid chromatography systems and the detection capabilities of mass spectrometry systems.


Assuntos
Glicômica , Glicopeptídeos/isolamento & purificação , Polissacarídeos/isolamento & purificação , Proteômica , Cromatografia Líquida , Glicopeptídeos/química , Humanos , Espectrometria de Massas , Polissacarídeos/química
5.
Methods Mol Biol ; 2762: 231-250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315369

RESUMO

MS-target analyses are frequently utilized to analyze and validate structural changes of biomolecules across diverse fields of study such as proteomics, glycoproteomics, glycomics, lipidomics, and metabolomics. Targeted studies are commonly conducted using multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) techniques. A reliable glycoproteomics analysis in intricate biological matrices is possible with these techniques, which streamline the analytical workflow, lower background interference, and enhance selectivity and specificity.


Assuntos
Metabolômica , Proteômica , Espectrometria de Massas/métodos , Proteômica/métodos , Lipidômica , Glicômica/métodos
6.
Methods Mol Biol ; 2762: 251-266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315370

RESUMO

Targeted mass spectrometric analysis is widely employed across various omics fields as a validation strategy due to its high sensitivity and accuracy. The approach has been successfully employed for the structural analysis of proteins, glycans, lipids, and metabolites. Multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) have been the methods of choice for targeted structural studies of biomolecules. These target analyses simplify the analytical workflow, reduce background interference, and increase selectivity/specificity, allowing for a reliable quantification of permethylated N-glycans in complex biological matrices.


Assuntos
Polissacarídeos , Espectrometria de Massas/métodos , Polissacarídeos/química , Fluxo de Trabalho
7.
Biomolecules ; 13(10)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37892149

RESUMO

The highly glycosylated S protein plays a vital role in host cell invasion, making it the principal target for vaccine development. Differences in mutations observed on the spike (S) protein of SARS-CoV-2 variants may result in distinct glycosylation patterns, thus influencing immunological evasion, infectivity, and transmissibility. The glycans can mask key epitopes on the S1 protein and alter its structural conformation, allowing the virus to escape the immune system. Therefore, we comprehensively characterize O-glycosylation in eleven variants of SARS-CoV-2 S1 subunits to understand the differences observed in the biology of the variants. In-depth characterization was performed with a double digestion strategy and an efficient LC-MS/MS approach. We observed that O-glycosylation is highly conserved across all variants in the region between the NTD and RBD, whereas other domains and regions exhibit variation in O-glycosylation. Notably, omicron has the highest number of O-glycosylation sites on the S1 subunit. Also, omicron has the highest level of sialylation in the RBD and RBM functional motifs. Our findings may shed light on how differences in O-glycosylation impact viral pathogenicity in variants of SARS-CoV-2 and facilitate the development of a robust vaccine with high protective efficacy against the variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicosilação , Cromatografia Líquida , Espectrometria de Massas em Tandem , Virulência/genética
8.
Biomolecules ; 13(11)2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-38002271

RESUMO

Glycoproteomic analysis is always challenging because of low abundance and complex site-specific heterogeneity. Glycoproteins are involved in various biological processes such as cell signaling, adhesion, and cell-cell communication and may serve as potential biomarkers when analyzing different diseases. Here, we investigate glycoproteins in narcolepsy type 1 (NT1) disease, a form of narcolepsy characterized by cataplexy-the sudden onset of muscle paralysis that is typically triggered by intense emotions. In this study, 27 human blood serum samples were analyzed, 16 from NT1 patients and 11 from healthy individuals serving as controls. We quantified hydrophilic interaction liquid chromatography (HILIC)-enriched glycopeptides from low-abundance serum samples of controls and NT1 patients via LC-MS/MS. Twenty-eight unique N-glycopeptides showed significant changes between the two studied groups. The sialylated N-glycopeptide structures LPTQNITFQTESSVAEQEAEFQSPK HexNAc6, Hex3, Neu5Ac2 (derived from the ITIH4 protein) and the structure IVLDPSGSMNIYLVLDGSDSIGASNFTGAK HexNAc5, Hex4, Fuc1 (derived from the CFB protein), with p values of 0.008 and 0.01, respectively, were elevated in NT1 samples compared with controls. In addition, the N-glycopeptide protein sources Ceruloplasmin, Complement factor B, and ITH4 were observed to play an important role in the complement activation and acute-phase response signaling pathways. This may explain the possible association between the biomarkers and pathophysiological effects.


Assuntos
Glicopeptídeos , Narcolepsia , Humanos , Cromatografia Líquida/métodos , Glicopeptídeos/química , Glicosilação , Soro/química , Espectrometria de Massas em Tandem/métodos , Glicoproteínas/química , Interações Hidrofóbicas e Hidrofílicas , Biomarcadores
9.
Biomolecules ; 13(9)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37759821

RESUMO

The SARS-CoV-2 virus rapidly spread worldwide, threatening public health. Since it emerged, the scientific community has been engaged in the development of effective therapeutics and vaccines. The subunit S1 in the spike protein of SARS-CoV-2 mediates the viral entry into the host and is therefore one of the major research targets. The S1 protein is extensively glycosylated, and there is compelling evidence that glycans protect the virus' active site from the human defense system. Therefore, investigation of the S1 protein glycome alterations in the different virus variants will provide a view of the glycan evolution and its relationship with the virus pathogenesis. In this study, we explored the N-glycosylation expression of the S1 protein for eleven SARS-CoV-2 variants: five variants of concern (VOC), including alpha, beta, gamma, delta, and omicron, and six variants of interest (VOI), including epsilon, eta, iota, lambda, kappa, and mu. The results showed significant differences in the N-glycome abundance of all variants. The N-glycome of the VOC showed a large increase in the abundance of sialofucosylated glycans, with the greatest abundance in the omicron variant. In contrast, the results showed a large abundance of fucosylated glycans for most of the VOI. Two glycan compositions, GlcNAc4,Hex5,Fuc,NeuAc (4-5-1-1) and GlcNAc6,Hex8,Fuc,NeuAc (6-8-1-1), were the most abundant structures across all variants. We believe that our data will contribute to understanding the S1 protein's structural differences between SARS-CoV-2 mutations.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
10.
Biomolecules ; 12(11)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36359007

RESUMO

Mild cognitive impairment (MCI) is an early stage of memory loss that affects cognitive abilities, such as language or virtual/spatial comprehension. This cognitive decline is mostly observed with the aging of individuals. Recently, MCI has been considered as a prodromal phase of Alzheimer's disease (AD), with a 10-15% conversion rate. However, the existing diagnostic methods fail to provide precise and well-timed diagnoses, and the pathophysiology of MCI is not fully understood. Alterations of serum N-glycan expression could represent essential contributors to the overall pathophysiology of neurodegenerative diseases and be used as a potential marker to assess MCI diagnosis using non-invasive procedures. Herein, we undertook an LC-MS/MS glycomics approach to determine and characterize potential N-glycan markers in depleted blood serum samples from MCI patients. For the first time, we profiled the isomeric glycome of the low abundant serum glycoproteins extracted from serum samples of control and MCI patients using an LC-MS/MS analytical strategy. Additionally, the MRM validation of the identified data showed five isomeric N-glycans with the ability to discriminate between healthy and MCI patients: the sialylated N-glycans GlcNAc5,Hex6,Neu5Ac3 and GlcNAc6,Hex7,Neu5Ac4 with single AUCs of 0.92 and 0.87, respectively, and a combined AUC of 0.96; and the sialylated-fucosylated N-glycans GlcNAc4,Hex5,Fuc,Neu5Ac, GlcNAc5,Hex6,Fuc,Neu5Ac2, and GlcNAc6,Hex7,Fuc,Neu5Ac3 with single AUCs of 0.94, 0.67, and 0.88, respectively, and a combined AUC of 0.98. According to the ingenuity pathway analysis (IPA) and in line with recent publications, the identified N-glycans may play an important role in neuroinflammation. It is a process that plays a fundamental role in neuroinflammation, an important process in the progression of neurodegenerative diseases.


Assuntos
Disfunção Cognitiva , Soro , Humanos , Cromatografia Líquida/métodos , Soro/química , Espectrometria de Massas em Tandem/métodos , Polissacarídeos/análise , Glicoproteínas , Biomarcadores , Disfunção Cognitiva/diagnóstico
11.
Metabolites ; 11(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34436504

RESUMO

Currently, surveillance strategies have inadequate performance for cirrhosis and early detection of hepatocellular carcinoma (HCC). The glycosylation of serum haptoglobin has shown to have significant differences between cirrhosis and HCC, thus can be used for diagnosis. We performed a comprehensive liquid chromatography-parallel reaction monitoring-mass spectrometry (LC-PRM-MS) approach, where a targeted parallel reaction monitoring (PRM) strategy was coupled to a powerful LC system, to study the site-specific isomerism of haptoglobin (Hp) extracted from cirrhosis and HCC patients. We found that our strategy was able to identify a large number of isomeric N-glycopeptides, mainly located in the Hp glycosylation site Asn207. Four N-glycopeptides were found to have significant changes in abundance between cirrhosis and HCC samples (p < 0.05). Strategic combinations of the significant N-glycopeptides, either with alpha-fetoprotein (AFP) or themselves, better estimate the areas under the curve (AUC) of their respective receiver operating characteristic (ROC) curves with respect to AFP. The combination of AFP with the isomeric sialylated fucosylated N-glycopeptides Asn207 + 5-6-1-2 and Asn207 + 5-6-1-3, resulted with an AUC value of 0.98, while the AUC value for AFP alone was 0.85. When comparing cirrhosis vs. early HCC, the isomeric N-glycopeptide Asn207 + 5-6-0-1 better estimated AUC with respect to AFP (AUCAFP = 0.81, and AUCAsn207 + 5-6-0-1 = 0.88, respectively).

12.
Anal Chim Acta ; 1070: 104-111, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31103163

RESUMO

Herein, we introduce a nanopaper-based analytical device (NAD) or "lab-on-nanopaper" device for visual sensing of human serum albumin (HSA) in human blood serums, which relies on embedding of curcumin within transparent bacterial cellulose (BC) nanopaper. BC nanopaper is an appropriate candidate to be an excellent platform for the development of optical (bio)sensors due to having exceptional properties such as optical transparency, high flexibility, porosity, biodegradability, and printability. The hydrophilic test zones were created on the fabricated bioplatform through creating the hydrophobic walls via laser printing technology. The color changes of curcumin embedded in BC nanopaper (CEBC) due to the inhibitory effect of HSA on the curcumin degradation in alkaline solutions, which can be monitored visually (naked eye/Smartphone camera) or spectroscopically using a spectrophotometer, were linearly proportional to the HSA concentration in the range of 10-300 µM and 25-400 µM, respectively. The developed NAD/CEBC as a novel albumin assay kit was successfully utilized to the determination of HSA in human blood serum samples with satisfactory results. Building upon the fascinating features of BC nanopaper as a very promising bioplatform in optical (bio)sensing applications we are confident "lab-on-nanopaper" devices/NADs, which take the advantages of the nanopaper and also meet the ASSURED criteria, could be considered as a new generation of optical (bio)sensing platforms that are currently based on paper, glass or plastic substrates.


Assuntos
Bactérias/química , Celulose/química , Curcumina/química , Nanoestruturas/química , Papel , Albumina Sérica Humana/análise , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA