Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1451: 75-90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801572

RESUMO

The current multicounty outbreak of monkeypox virus (MPXV) posed an emerging and continued challenge to already strained public healthcare sector, around the globe. Since its first identification, monkeypox disease (mpox) remained enzootic in Central and West African countries where reports of human cases are sporadically described. Recent trends in mpox spread outside the Africa have highlighted increased incidence of spillover of the MPXV from animal to humans. While nature of established animal reservoirs remained undefined, several small mammals including rodents, carnivores, lagomorphs, insectivores, non-human primates, domestic/farm animals, and several species of wildlife are proposed to be carrier of the MPXV infection. There are established records of animal-to-human (zoonotic) spread of MPXV through close interaction of humans with animals by eating bushmeat, contracting bodily fluids or trading possibly infected animals. In contrast, there are reports and increasing possibilities of human-to-animal (zooanthroponotic) spread of the MPXV through petting and close interaction with pet owners and animal care workers. We describe here the rationales and molecular factors which predispose the spread of MPXV not only amongst humans but also from animals to humans. A range of continuing opportunities for the spread and evolution of MPXV are discussed to consider risks beyond the currently identified groups. With the possibility of MPXV establishing itself in animal reservoirs, continued and broad surveillance, investigation into unconventional transmissions, and exploration of spillover events are warranted.


Assuntos
Monkeypox virus , Mpox , Zoonoses , Animais , Mpox/transmissão , Mpox/epidemiologia , Mpox/virologia , Humanos , Monkeypox virus/patogenicidade , Monkeypox virus/genética , Zoonoses/transmissão , Zoonoses/virologia , Zoonoses/epidemiologia , Reservatórios de Doenças/virologia , Surtos de Doenças , Animais Selvagens/virologia
2.
Adv Exp Med Biol ; 1451: 111-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801574

RESUMO

Poxviruses are large (200-450 nm) and enveloped viruses carrying double-stranded DNA genome with an epidermal cell-specific adaptation. The genus Orthopoxvirus within Poxviridae family constitutes several medically and veterinary important viruses including variola (smallpox), vaccinia, monkeypox virus (MPXV), and cowpox. The monkeypox disease (mpox) has recently emerged as a public health emergency caused by MPXV. An increasing number of human cases of MPXV have been documented in non-endemic nations without any known history of contact with animals brought in from endemic and enzootic regions, nor have they involved travel to an area where the virus was typically prevalent. Here, we review the MPXV replication, virus pathobiology, mechanism of viral infection transmission, virus evasion the host innate immunity and antiviral therapies against Mpox. Moreover, preventive measures including vaccination were discussed and concluded that cross-protection against MPXV may be possible using antibodies that are directed against an Orthopoxvirus. Despite the lack of a specialised antiviral medication, several compounds such as Cidofovir and Ribavirin warrant consideration against mpox.


Assuntos
Monkeypox virus , Mpox , Orthopoxvirus , Humanos , Animais , Monkeypox virus/genética , Monkeypox virus/patogenicidade , Monkeypox virus/imunologia , Orthopoxvirus/genética , Orthopoxvirus/imunologia , Orthopoxvirus/classificação , Mpox/virologia , Mpox/transmissão , Mpox/epidemiologia , Antivirais/uso terapêutico , Antivirais/farmacologia , Replicação Viral , Infecções por Poxviridae/virologia , Infecções por Poxviridae/transmissão , Infecções por Poxviridae/prevenção & controle , Infecções por Poxviridae/imunologia
3.
Front Immunol ; 15: 1284056, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440728

RESUMO

Bats are natural host reservoirs and have adapted a unique innate immune system that permits them to host many viruses without exhibiting symptoms. Notably, bat interferon stimulated genes (ISGs) have been shown to play antiviral roles. Interferon induced protein with tetratricopeptide repeats 5 (IFIT5) is a well-characterised ISG in humans with antiviral activities against negative-sense RNA viruses via inhibiting viral transcription. Here, we aim to investigate if Pteropus alecto (pa) IFIT5 (paIFIT5) possess the ability to inhibit negative-sense RNA viruses. Initially, gene syntenic and comparative structural analyses of multiple animals highlighted a high level of similarity between Pteropus alecto and human IFIT5 proteins. Our results showed that paIFIT5 was significantly inducible by viral and dsRNA stimulation. Transient overexpression of paIFIT5 inhibited the replication of vesicular stomatitis virus (VSV). Using minireplicon and transcription reporter assays, we demonstrated the ability of paIFIT5 specifically to inhibit H17N10 polymerase activity. Mechanistically, we noticed that the antiviral potential of paIFIT5 against negative sense RNA viruses was retributed to its interaction with 5'ppp containing RNA. Taken together, these findings highlight the genetic and functional conservation of IFIT5 among mammals.


Assuntos
Quirópteros , Vírus de RNA , Animais , Humanos , Interferons/genética , Quirópteros/genética , Repetições de Tetratricopeptídeos , Antivirais
4.
Microbes Infect ; 26(1-2): 105231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37777054

RESUMO

Broad-spectrum antiviral activities of interferon-induced transmembrane proteins (IFITMs) are primarily attributed to in vitro inhibition of viral entry. Here, we used an avian sarcoma-leukosis virus (RCAS)-based gene transfer system and successfully generated chicks that constitutively express chicken IFITM3 (chIFITM3). The chIFITM3-overexpressing chicks showed significant protection and disease tolerance against highly pathogenic avian influenza virus (HPAIV) H5N1 (Clade 2.2.1.2). The chicks, overexpressing chIFITM3, also showed delayed onset of clinical symptoms, reduced viral shedding, and alleviated histopathologic alterations compared to control and challenged chicks. These findings highlight that overexpression of chIFITM3 provide a substantial defense against zoonotic H5N1 in vivo.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Sarcoma Aviário , Animais , Galinhas , Influenza Aviária/prevenção & controle , Virus da Influenza A Subtipo H5N1/genética
5.
Vaccines (Basel) ; 11(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36992252

RESUMO

The emergence of the Omicron variant has reinforced the importance of continued SARS-CoV-2 evolution and its possible impact on vaccine effectiveness. Specifically, mutations in the receptor-binding domain (RBD) are critical to comprehend the flexibility and dynamicity of the viral interaction with the human agniotensin-converting enzyme 2 (hACE2) receptor. To this end, we have applied a string of deep structural and genetic analysis tools to map the substitution patterns in the S protein of major Omicron sub-variants (n = 51) with a primary focus on the RBD mutations. This head-to-head comparison of Omicron sub-variants revealed multiple simultaneous mutations that are attributed to antibody escape, and increased affinity and binding to hACE2. Our deep mapping of the substitution matrix indicated a high level of diversity at the N-terminal and RBD domains compared with other regions of the S protein, highlighting the importance of these two domains in a matched vaccination approach. Structural mapping identified highly variable mutations in the up confirmation of the S protein and at sites that critically define the function of the S protein in the virus pathobiology. These substitutional trends offer support in tracking mutations along the evolutionary trajectories of SAR-CoV-2. Collectively, the findings highlight critical areas of mutations across the major Omicron sub-variants and propose several hotspots in the S proteins of SARS-CoV-2 sub-variants to train the future design and development of COVID-19 vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA