Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 12(8): 5157-67, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21954350

RESUMO

Bacterial outer membrane proteins, along with a filling lipid molecule can be modified to form stable self-assembled monolayers on gold. The transmembrane domain of Escherichia coli outer membrane protein A has been engineered to create a scaffold protein to which functional motifs can be fused. In earlier work we described the assembly and structure of an antibody-binding array where the Z domain of Staphylococcus aureus protein A was fused to the scaffold protein. Whilst the binding of rabbit polyclonal immunoglobulin G (IgG) to the array is very strong, mouse monoclonal IgG dissociates from the array easily. This is a problem since many immunodiagnostic tests rely upon the use of mouse monoclonal antibodies. Here we describe a strategy to develop an antibody-binding array that will bind mouse monoclonal IgG with lowered dissociation from the array. A novel protein consisting of the scaffold protein fused to two pairs of Z domains separated by a long flexible linker was manufactured. Using surface plasmon resonance the self-assembly of the new protein on gold and the improved binding of mouse monoclonal IgG were demonstrated.


Assuntos
Anticorpos Monoclonais/metabolismo , Imunoglobulina G/metabolismo , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Anticorpos Monoclonais/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/metabolismo , Dicroísmo Circular , Clonagem Molecular , Imunoglobulina G/química , Ligação Proteica/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície
2.
Sci Rep ; 9(1): 11034, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363141

RESUMO

Periodontitis is an economically important disease which is highly prevalent worldwide. Current diagnostic approaches are time-consuming and require interpretation of multiple aspects of clinical and radiographic assessment. Chair-side monitoring of inflammatory mediators of periodontitis could provide immediate information about disease activity, which can inform patient management. We aimed to develop a novel prototype biosensor to measure salivary matrix metalloproteinase-8 (MMP-8) using specific antibodies and surface acoustic wave (SAW) technology. The analytical performance of the prototype biosensor was compared to standard enzyme-linked immunosorbent assay (ELISA) using unstimulated saliva samples obtained from patients with periodontitis before and after non-surgical treatment (N = 58), patients with gingivitis (N = 54) and periodontally healthy volunteers (N = 65). Receiver operator characteristic (ROC) analysis for distinguishing periodontitis from health revealed an almost identical performance between the sensor and ELISA assays (area under curve values (AUC): ELISA 0.93; SAW 0.89). Furthermore, both analytical approaches yielded readouts which distinguished between heath, gingivitis and periodontitis, correlated identically with clinical measures of periodontal disease and recorded similar post-treatment decreases in salivary MMP-8 in periodontitis. The assay time for our prototype device is 20 minutes. The prototype SAW biosensor is a novel and rapid method of monitoring periodontitis which delivers similar analytical performance to conventional laboratory assays.


Assuntos
Técnicas Biossensoriais/métodos , Metaloproteinase 8 da Matriz/análise , Periodontite/metabolismo , Saliva/química , Acústica , Adulto , Anticorpos/imunologia , Diagnóstico Bucal/métodos , Feminino , Gengivite/diagnóstico , Gengivite/metabolismo , Humanos , Imunoensaio/métodos , Masculino , Metaloproteinase 8 da Matriz/imunologia , Pessoa de Meia-Idade , Periodontite/diagnóstico
3.
NPJ Digit Med ; 1: 35, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31304317

RESUMO

Despite widened access to HIV testing, around half of those infected worldwide are unaware of their HIV-positive status and linkage to care remains a major challenge. Current rapid HIV tests are typically analogue risking incorrect interpretation, no facile electronic data capture, poor linkage to care and data loss for public health. Smartphone-connected diagnostic devices have potential to dramatically improve access to testing and patient retention with electronic data capture and wireless connectivity. We report a pilot clinical study of surface acoustic wave biosensors based on low-cost components found in smartphones to diagnose HIV in 133 patient samples. We engineered a small, portable, laboratory prototype and dual-channel biochips, with in-situ reference control coating and miniaturised configuration, requiring only 6 µL plasma. The dual-channel biochips were functionalized by ink-jet printing with capture coatings to detect either anti-p24 or anti-gp41 antibodies, and a reference control. Biochips were tested with 31 plasma samples from patients with HIV, and 102 healthy volunteers. SH-SAW biosensors showed excellent sensitivity, specificity, low sample volumes and rapid time to result, and were benchmarked to commercial rapid HIV tests. Testing for individual biomarkers found sensitivities of 100% (anti-gp41) and 64.5% (anti-p24) (combined sensitivity of 100%) and 100% specificity, within 5 min. All positive results were recorded within 60 s of sample addition with an electronic readout. Next steps will focus on a smartphone-connected device prototype and user-friendly app interface for larger scale evaluation and field studies, towards our ultimate goal of a new generation of affordable, connected point-of-care HIV tests.

4.
Sci Rep ; 7(1): 11971, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931860

RESUMO

The development is reported of an ultra-rapid, point-of-care diagnostic device which harnesses surface acoustic wave (SAW) biochips, to detect HIV in a finger prick of blood within 10 seconds (sample-in-result-out). The disposable quartz biochip, based on microelectronic components found in every consumer smartphone, is extremely fast because no complex labelling, amplification or wash steps are needed. A pocket-sized control box reads out the SAW signal and displays results electronically. High analytical sensitivity and specificity are found with model and real patient blood samples. The findings presented here open up the potential of consumer electronics to cut lengthy test waiting times, giving patients on the spot access to potentially life-saving treatment and supporting more timely public health interventions to prevent disease transmission.


Assuntos
Técnicas Biossensoriais/métodos , Infecções por HIV/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Smartphone , Humanos , Sensibilidade e Especificidade , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA