Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 93(3): 281-293, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38243658

RESUMO

The loose-equilibrium concept (LEC) predicts that ecological assemblages change transiently but return towards an earlier or average structure. The LEC framework can help determine whether assemblages vary within expected ranges or are permanently altered following environmental change. Long-lived, slow-growing animals typically respond slowly to environmental change, and their assemblage dynamics may respond over decades, which transcends most ecological studies. Unionid mussels are valuable for studying dynamics of long-lived animals because they can live >50 years and occur in dense, species-rich assemblages (mussel beds). Mussel beds can persist for decades, but disturbance can affect species differently, resulting in variable trajectories according to differences in species composition within and among rivers. We used long-term data sets (10-40 years) from seven rivers in the eastern United States to evaluate the magnitude, pace and directionality of mussel assemblage change within the context of the LEC. Site trajectories varied within and among streams and showed patterns consistent with either the LEC or directional change. In streams that conformed to the LEC, rank abundance of dominant species remained stable over time, but directional change in other streams was driven by changes in the rank abundance and composition of dominant species. Characteristics of mussel assemblage change varied widely, ranging from those conforming to the LEC to those showing strong directional change. Conservation approaches that attempt to maintain or create a desired assemblage condition should acknowledge this wide range of possible assemblage trajectories and that the environmental factors that influence those changes remain poorly understood.


Assuntos
Bivalves , Peixes , Animais , Água Doce , Rios , Ecossistema
2.
Mol Ecol ; 32(22): 5894-5912, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37203688

RESUMO

Understanding patterns of diversity across macro (e.g. species-level) and micro (e.g. molecular-level) scales can shed light on community function and stability by elucidating the abiotic and biotic drivers of diversity within ecological communities. We examined the relationships among taxonomic and genetic metrics of diversity in freshwater mussels (Bivalvia: Unionidae), an ecologically important and species-rich group in the southeastern United States. Using quantitative community surveys and reduced-representation genome sequencing across 22 sites in seven rivers and two river basins, we surveyed 68 mussel species and sequenced 23 of these species to characterize intrapopulation genetic variation. We tested for the presence of species diversity-abundance correlations (i.e. the more-individuals hypothesis, MIH), species-genetic diversity correlations (SGDCs) and abundance-genetic diversity correlations (AGDCs) across all sites to evaluate relationships between different metrics of diversity. Sites with greater cumulative multispecies density (a standardized metric of abundance) had a greater number of species, consistent with the MIH hypothesis. Intrapopulation genetic diversity was strongly associated with the density of most species, indicating the presence of AGDCs. However, there was no consistent evidence for SGDCs. Although sites with greater overall densities of mussels had greater species richness, sites with higher genetic diversity did not always exhibit positive correlations with species richness, suggesting that there are spatial and evolutionary scales at which the processes influencing community-level diversity and intraspecific diversity differ. Our work reveals the importance of local abundance as indicator (and possibly a driver) of intrapopulation genetic diversity.


Assuntos
Bivalves , Unionidae , Humanos , Animais , Metagenômica , Biodiversidade , Água Doce , Rios , Bivalves/genética , Ecossistema
3.
Ecol Appl ; 33(4): e2842, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36920346

RESUMO

The interaction of climate change and increasing anthropogenic water withdrawals is anticipated to alter surface water availability and the transport of carbon (C), nitrogen (N), and phosphorus (P) in river networks. But how changes to river flow will alter the balance, or stoichiometry, of these fluxes is unknown. The Lower Flint River Basin (LFRB) is part of an interstate watershed relied upon by several million people for diverse ecosystem services, including seasonal crop irrigation, municipal drinking water access, and public recreation. Recently, increased water demand compounded with intensified droughts have caused historically perennial streams in the LFRB to cease flowing, increasing ecosystem vulnerability. Our objectives were to quantify how riverine dissolved C:N:P varies spatially and seasonally and determine how monthly stoichiometric fluxes varied with overall water availability in a major tributary of LFRB. We used a long-term record (21-29 years) of solute water chemistry (dissolved organic carbon, nitrate/nitrite, ammonia, and soluble reactive phosphorus) paired with long-term stream discharge data across six sites within a single LFRB watershed. We found spatial and seasonal differences in soluble nutrient concentrations and stoichiometry attributable to groundwater connections, the presence of a major floodplain wetland, and flow conditions. Further, we showed that water availability, as indicated by the Palmer Drought Severity Index (PDSI), strongly predicted stoichiometry with generally lower C:N and C:P and higher N:P fluxes during periods of low water availability (PDSI < -4). These patterns suggest there may be long-term and significant changes to stream ecosystem function as water availability is being dramatically altered by human demand with consequential impacts on solute transport, in-stream processing, and stoichiometric ratios.


Assuntos
Ecossistema , Água , Humanos , Rios , Nitrogênio , Fósforo
4.
Microb Ecol ; 84(3): 901-910, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34671826

RESUMO

Anthropogenic habitat disturbances can dramatically alter ecological community interactions, including host-pathogen dynamics. Recent work has highlighted the potential for habitat disturbances to alter host-associated microbial communities, but the associations between anthropogenic disturbance, host microbiomes, and pathogens are unresolved. Amphibian skin microbial communities are particularly responsive to factors like temperature, physiochemistry, pathogen infection, and environmental microbial reservoirs. Through a field survey on wild populations of Acris crepitans (Hylidae) and Lithobates catesbeianus (Ranidae), we assessed the effects of habitat disturbance and connectivity on environmental bacterial reservoirs, Batrachochytrium dendrobatidis (Bd) infection, and skin microbiome composition. We found higher measures of microbiome dispersion (a measure of community variability) in A. crepitans from more disturbed ponds, supporting the hypothesis that disturbance increases stochasticity in biological communities. We also found that habitat disturbance limited microbiome similarity between locations for both species, suggesting greater isolation of bacterial assemblages in more disturbed areas. Higher disturbance was associated with lower Bd prevalence for A. crepitans, which could signify suboptimal microclimates for Bd in disturbed habitats. Combined, our findings show that reduced microbiome stability stemming from habitat disturbance could compromise population health, even in the absence of pathogenic infection.


Assuntos
Quitridiomicetos , Microbiota , Micoses , Animais , Batrachochytrium , Micoses/microbiologia , Ranidae/microbiologia , Bactérias , Anuros
5.
Oecologia ; 195(1): 187-198, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33389154

RESUMO

Nutrient recycling by consumers can strongly impact nutrient availability for autotrophic and heterotrophic microbes, thus impacting functions such as primary production and decomposition. Filter-feeding freshwater mussels form dense, multispecies assemblages in aquatic ecosystems and have been shown to play a critical role in nutrient cycling. Mussel excretion can enhance benthic primary production and influence algal species composition. However, the role of mussels in brown or detritus-based food webs and species-specific differences has received considerably less attention. Here, using mesocosm experiments, we assessed how three species of freshwater mussels that occupy three different phylogenetic tribes influenced benthic algal accrual, ecosystem metabolism, cotton strip decomposition, leaf litter (Acer saccharum) decomposition, and litter-associated fungal biomass measured as ergosterol. Additionally, we measured mussel excretion and biodeposition rates and assessed the stoichiometry (C:N, C:P, and N:P) of the benthic algae, cotton strips, and leaf litter. In comparison to controls without mussels, generally, mussel treatments had higher benthic algal biomass composed of more diatoms, higher gross primary productivity and net ecosystem production rates, and higher cotton strip tensile strength loss, but there was not a difference in ecosystem respiration rates, leaf litter decomposition rates, or fungal biomass. Benthic algae had lower C:N and higher N:P in mussel treatment tanks and cotton strip C:N was lower in mesocosms with mussels. Our results suggest that nutrient regeneration by mussels most strongly regulates green food webs, with some impacts to brown food webs, suggesting that consumers have interactive effects on microbial functioning in freshwaters.


Assuntos
Bivalves , Cadeia Alimentar , Animais , Biomassa , Ecossistema , Filogenia
6.
Oecologia ; 188(4): 1133-1144, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30343403

RESUMO

Animals can play important roles in cycling nutrients [hereafter consumer-driven nutrient dynamics (CND)], but researchers typically simplify animal communities inhabiting dynamic environments into single groups that are tested under relatively static conditions. We propose a conceptual framework and present empirical evidence for CND that considers the potential effects of spatially overlapping animal groups within dynamic ecosystems. Because streams can maintain high biomass of mussels and fish, we were able to evaluate this framework by testing if biogeochemical hotspots generated by stable aggregations of mussels attract fishes. We predicted that spatial overlap between these groups may increase the flux of mineralized nutrients. We quantified how different fish assemblage biomass was between mussel bed reaches and reaches without mussels. We compared fish and mussel biomass at mussel beds to test whether differences in animal biomass mediate their contributions to nutrient cycling through nitrogen and phosphorous excretion. We estimated areal excretion rates for each group by combining biomass estimates with measured excretion rates. Fish biomass was homogeneously distributed, except following a period of low flow when fish were more concentrated at mussel beds. Mussel biomass was consistently an order of magnitude greater than fish biomass and mussel areal excretion rates exceeded fish excretion rates. However, the magnitude of those differences varied spatially and temporally. Mussel excretion stoichiometry varied with changes in assemblage composition, while fish excretion stoichiometry varied little. Biogeochemical hotspots associated with mussels did not generally overlap with fish aggregations, thus, under these conditions, animal processes appear to exert additive ecosystem effects.


Assuntos
Bivalves , Rios , Animais , Biomassa , Ecossistema , Peixes , Nutrientes
7.
Oecologia ; 187(3): 731-744, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29700633

RESUMO

Food resource availability varies along gradients of elevation where riparian vegetative cover exerts control on the relative availability of allochthonous and autochthonous resources in streams. Still, little is known about how elevation gradients can alter the availability and quality of resources and how stream food webs respond. We sampled habitat characteristics, stable isotope signatures (δ13C, δ15N, δ2Η) and the carbon, nitrogen and phosphorus composition of basal food resources and insects in 11 streams of similar size along an elevation gradient from 1260 to 4045 m on the northeastern slope of the Ecuadorian Andean-Amazon region. Algal-based (autochthonous) food resources primarily supported insects occurring at higher elevations, but at low elevations there was a shift to greater allochthony, corresponding with lower light availability and reduced epilithon resource abundance. Additionally, percent phosphorus (%P) of both autochthonous and allochthonous food resources and of body tissue for some abundant insect taxa (stonefly Anacroneuria and mayfly Andesiops) declined with increasing elevation, despite the greater autochthony at high elevation. Allochthonous food resources were always a lower quality food resource, as indicated by higher C:N, N:P, and lower %P, across elevation in comparison to autochthonous resources, but autochthonous resources had higher %P than allochthonous resources across all elevations and comprised a greater portion of high-elevation insect resource assimilation. Aquatic insects may be able to compensate for the lower quality of both resource types at high elevations through altered body stoichiometry, even though higher quality autochthonous-based foods are in high abundance at high elevations.


Assuntos
Ephemeroptera , Rios , Animais , Ecossistema , Cadeia Alimentar , Insetos
8.
Ecol Appl ; 24(2): 375-84, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689148

RESUMO

Nitrogen (N) fertilizer runoff into rivers is linked to nutrient enrichment, hydrologic alteration, habitat degradation and loss, and declines in biotic integrity in streams. Nitrogen runoff from agriculture is expected to increase with population growth, so tracking these sources is vital to enhancing biomonitoring and management actions. Unionid mussels are large, long-lived, sedentary, primary consumers that transfer particulate material and nutrients from the water column to the sediments through their filter feeding. Because of these traits, mussels may provide a temporal integration of nitrogen inputs into watersheds. Our goals were to (1) establish a baseline delta15N signature for unionid mussels in watersheds not heavily influenced by agriculture for use in comparative analyses and (2) determine if mussels provide an integrative measure of N sources in watersheds with varying percentages of agriculture across large spatial scales. We compiled tissue delta15N data for 20 species of mussels from seven geographic areas, including 23 watersheds and 42 sample sites that spanned varying degrees of agricultural intensification across the eastern United States and Canada. We used GIS to determine land cover within the study basins, and we estimated net anthropogenic nitrogen inputs (NANI) entering these systems. We then determined the relationship between mussel tissue delta15N and percentage of land in agriculture (%AG) and net anthropogenic N loading. The delta15N of mussel tissue could be predicted from both %AG and net anthropogenic N loading, and one component of NANI, the amount of N fertilizer applied, was strongly related to the delta15N of mussel tissue. Based on our results, mussels occupying a system not affected by agricultural land use would have a baseline delta15N signature of approximately 2.0 pe thousand, whereas mussels in basins with heavy agriculture had delta15N signatures of 13.6 per thousand. Our results demonstrate that mussels integrate anthropogenic N input into rivers at a watershed scale and could be a good bioassessment tool for tracking agriculture N sources.


Assuntos
Agricultura/métodos , Bivalves/fisiologia , Longevidade , Nitrogênio/metabolismo , Animais , Isótopos de Nitrogênio , Estados Unidos
9.
Ecology ; 94(6): 1359-69, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23923499

RESUMO

Nutrient cycling is a key process linking organisms in ecosystems. This is especially apparent in stream environments in which nutrients are taken up readily and cycled through the system in a downstream trajectory. Ecological stoichiometry predicts that biogeochemical cycles of different elements are interdependent because the organisms that drive these cycles require fixed ratios of nutrients. There is growing recognition that animals play an important role in biogeochemical cycling across ecosystems. In particular, dense aggregations of consumers can create biogeochemical hotspots in aquatic ecosystems via nutrient translocation. We predicted that filter-feeding freshwater mussels, which occur as speciose, high-biomass aggregates, would create biogeochemical hotspots in streams by altering nutrient limitation and algal dynamics. In a field study, we manipulated nitrogen and phosphorus using nutrient-diffusing substrates in areas with high and low mussel abundance, recorded algal growth and community composition, and determined in situ mussel excretion stoichiometry at 18 sites in three rivers (Kiamichi, Little, and Mountain Fork Rivers, south-central United States). Our results indicate that mussels greatly influence ecosystem processes by modifying the nutrients that limit primary productivity. Sites without mussels were N-limited with -26% higher relative abundances of N-fixing blue-green algae, while sites with high mussel densities were co-limited (N and P) and dominated by diatoms. These results corroborated the results of our excretion experiments; our path analysis indicated that mussel excretion has a strong influence on stream water column N:P. Due to the high N:P of mussel excretion, strict N-limitation was alleviated, and the system switched to being co-limited by both N and P. This shows that translocation of nutrients by mussel aggregations is important to nutrient dynamics and algal species composition in these rivers. Our study highlights the importance of consumers and this imperiled faunal group on nutrient cycling and community dynamics in aquatic ecosystems.


Assuntos
Bivalves/fisiologia , Ecossistema , Comportamento Alimentar/fisiologia , Animais , Clorófitas , Cianobactérias , Diatomáceas , Monitoramento Ambiental , Modelos Biológicos , Oklahoma , Dinâmica Populacional , Rios
10.
Microorganisms ; 11(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37894147

RESUMO

Freshwater mussels are important indicators of the overall health of their environment but have suffered declines that have been attributed to factors such as habitat degradation, a loss of fish hosts, climate change, and excessive nutrient inputs. The loss of mussel biodiversity can negatively impact freshwater ecosystems such that understanding the mussel's gut microbiome has been identified as a priority topic for developing conservation strategies. In this study, we determine whether ethanol-stored specimens of freshwater mussels can yield representative information about their gut microbiomes such that changes in the microbiome through time could potentially be determined from museum mussel collections. A short-term preservation experiment using the invasive clam Corbicula fluminea was used to validate the use of ethanol as a method for storing the bivalve microbiome, and the gut microbiomes of nine native mussel species that had been preserved in ethanol for between 2 and 9 years were assessed. We show that ethanol preservation is a valid storage method for bivalve specimens in terms of maintaining an effective sequencing depth and the richness of their gut bacterial assemblages and provide further insight into the gut microbiomes of the invasive clam C. fluminea and nine species of native mussels. From this, we identify a "core" genus of bacteria (Romboutsia) that is potentially common to all freshwater bivalve species studied. These findings support the potential use of ethanol-preserved museum specimens to examine patterns in the gut microbiomes of freshwater mussels over long periods.

11.
PeerJ ; 11: e15127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033728

RESUMO

The use of environmental DNA (eDNA) to assess aquatic biodiversity is a growing field with great potential for monitoring and managing threatened species, like freshwater mussel (Unionidae) populations. Freshwater mussels are globally imperiled and serve essential roles in aquatic systems as a food source and as a natural water filter making their management essential for ecosystem health. Unfortunately, mussel populations are often understudied, and challenges exist to accurately and efficiently describe the full suite of species present. Multispecies eDNA approaches may also be more challenging where freshwater mussel populations are most diverse due to ongoing and significant taxonomic restructuring that has been further complicated by molecular phylogenies using mitochondrial genes. For this study, we developed a microfluidic metabarcoding array that targets a wide range of species, from invertebrates to fishes, with an emphasis on detecting unionid mussels known to be present in the Sipsey River, Alabama. We compared mussel species diversity across six sites with well-studied mussel assemblages using eDNA surveys and traditional quadrat surveys in 2016. We examined how factors such as mussel population density, biomass and location in the river substrate impacted our ability to detect certain species; and investigated unexpected eDNA detections through phylogenetic analysis. Our eDNA results for fish and mussel species were broadly consistent with the data from traditional electrofishing and quadrat-based field surveys, although both community eDNA and conventional sampling detected species unique to that method. Our phylogenetic analysis agreed with other studies that treat Pleurobema decisum and P. chattanoogaense as synonymous species; however, they are still listed as unique species in molecular databases which complicates their identity in a metabarcoding assay. We also found that Fusconaia flava and F. cerina are indistinguishable from one another using a portion of the NADH dehydrogenase Subunit 1 (ND1) marker, which may warrant further investigation into whether or not they are synonymous. Our results show that many factors impacted our ability to detect and correctly identify Unionidae mussel species. Here we describe the obstacles we faced, including the murky phylogeny of Unionidae mussels and turbid river conditions, and our development of a potentially impactful freshwater mussel monitoring eDNA assay.


Assuntos
Bivalves , DNA Ambiental , Unionidae , Animais , DNA Ambiental/genética , Ecossistema , Código de Barras de DNA Taxonômico/métodos , Filogenia , Alabama , Crise de Identidade , Água Doce , Biodiversidade , Bivalves/genética , Unionidae/genética , Peixes
12.
Sci Data ; 10(1): 745, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891169

RESUMO

The United States of America has a diverse collection of freshwater mussels comprising 301 species distributed among 59 genera and two families (Margaritiferidae and Unionidae), each having a unique suite of traits. Mussels are among the most imperilled animals and are critical components of their ecosystems, and successful management, conservation and research requires a cohesive and widely accessible data source. Although trait-based analysis for mussels has increased, only a small proportion of traits reflecting mussel diversity in this region has been collated. Decentralized and non-standardized trait information impedes large-scale analysis. Assembling trait data in a synthetic dataset enables comparison across species and lineages and identification of data gaps. We collated data from the primary literature, books, state and federal reports, theses and dissertations, and museum collections into a centralized dataset covering information on taxonomy, morphology, reproductive ecology and life history, fish hosts, habitats, thermal tolerance, geographic distribution, available genetic information, and conservation status. By collating these traits, we aid researchers in assessing variation in mussel traits and modelling ecosystem change.


Assuntos
Bivalves , Unionidae , Animais , Ecossistema , Água Doce , Filogenia , Unionidae/genética , Estados Unidos
13.
Integr Comp Biol ; 61(6): 2154-2162, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34323964

RESUMO

Robustness and resilience are widely used in the biological sciences and related disciplines to describe how systems respond to change. Robustness is the ability to tolerate change without adapting or moving to another state. Resilience refers to the ability for a system to sustain a perturbation and maintain critical functions. Robustness and resilience transcend levels of biological organization, though they do not scale directly across levels. We live in an era of novel stressors and unprecedented change, including climate change, emerging environmental contaminants, and changes to the Earth's biogeochemical and hydrological cycles. We envision a common framework for developing models to predict the robustness and resilience of biological functions associated with complex systems that can transcend disciplinary boundaries. Conceptual and quantitative models of robustness and resilience must consider cross-scale interactions of potentially infinite complexity, but it is impossible to capture everything within a single model. Here, we discuss the need to balance accuracy and complexity when designing models, data collection, and downstream analyses to study robustness and resilience. We also consider the difficulties in defining the spatiotemporal domain when studying robustness and resilience as an emergent property of a complex system. We suggest a framework for implementing transdisciplinary research on robustness and resilience of biological systems that draws on participatory stakeholder engagement methods from the fields of conservation and natural resources management. Further, we suggest that a common, simplified model development framework for describing complex biological systems will provide new, broadly relevant educational tools. Efficient interdisciplinary collaboration to accurately develop a model of robustness and resilience would enable rapid, context-specific assessment of complex biological systems with benefits for a broad range of societally relevant problems.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Animais , Conservação dos Recursos Naturais/métodos , Coleta de Dados , Pesquisa Interdisciplinar
14.
Ecol Evol ; 12(3): e8737, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342574

RESUMO

This study aimed to identify the importance of ecological factors to distribution patterns of the invasive Clam (Corbicula fluminea) relative to native mussels (family: Unionidae) across seven rivers within the Mobile and Tennessee basins, Southeast United States. We quantitatively surveyed dense, diverse native mussel aggregations across 20 river reaches and estimated mussel density, biomass, and species richness along with density of invasive C. fluminea (hereafter Corbicula). We measured substrate particle size, velocity, and depth in quadrats where animals were collected. Additionally, we characterized reach scale environmental parameters including seston quantity and quality (% Carbon, % Nitrogen, % Phosphorous), water chemistry (ammonium [ NH 4 + ], soluble reactive phosphorous [SRP]), and watershed area and land cover. Using model selection, logistic regression, and multivariate analysis, we characterized habitat features and their association to invasive Corbicula within mussel beds. We found that Corbicula were more likely to occur and more abundant in quadrats with greater mussel biomass, larger substrate size, faster water velocity, and shallower water depth. At the reach scale, Corbicula densities increased where particle sizes were larger. Mussel richness, density, and biomass increased with watershed area. Water column NH 4 + increased at reaches with more urban land cover. No land cover variables influenced Corbicula populations or mussel communities. The strong overlapping distribution of Corbicula and mussels support the hypothesis that Corbicula are not necessarily limited by habitat factors and may be passengers of change in rivers where mussels have declined due to habitat degradation. Whether Corbicula is facilitated by mussels or negatively interacts with mussels in these systems remains to be seen. Focused experiments that manipulate patch scale variables would improve our understanding of the role of species interactions (e.g., competition, predation, facilitation) or physical habitat factors in influencing spatial overlap between Corbicula and native mussels.

15.
Front Microbiol ; 13: 800061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444631

RESUMO

The Asian clam Corbicula fluminea (Family: Cyneridae) has aggressively invaded freshwater habitats worldwide, resulting in dramatic ecological changes and declines of native bivalves such as freshwater mussels (Family: Unionidae), one of the most imperiled faunal groups. Despite increases in our knowledge of invasive C. fluminea biology, little is known of how intrinsic and extrinsic factors, including co-occurring native species, influence its microbiome. We investigated the gut bacterial microbiome across genetically differentiated populations of C. fluminea in the Tennessee and Mobile River Basins in the Southeastern United States and compared them to those of six co-occurring species of native freshwater mussels. The gut microbiome of C. fluminea was diverse, differed with environmental conditions and varied spatially among rivers, but was unrelated to host genetic variation. Microbial source tracking suggested that the gut microbiome of C. fluminea may be influenced by the presence of co-occurring native mussels. Inferred functions from 16S rRNA gene data using PICRUST2 predicted a high prevalence and diversity of degradation functions in the C. fluminea microbiome, especially the degradation of carbohydrates and aromatic compounds. Such modularity and functional diversity of the microbiome of C. fluminea may be an asset, allowing to acclimate to an extensive range of nutritional sources in invaded habitats, which could play a vital role in its invasive success.

16.
Microorganisms ; 9(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669471

RESUMO

Freshwater mussels perform essential ecosystem functions, yet we have no information on how their microbiomes fluctuate over time. In this study, we examined temporal variation in the microbiome of six mussel species (Lampsilis ornata, Obovaria unicolor, Elliptio arca, Fusconaia cerina, Cyclonaias asperata, and Tritogonia verrucosa) sampled from the same river in 2016 and 2019. We examined the taxonomic, phylogenetic, and inferred functional (from 16S rRNA sequences) facets of their microbiome diversity. Significant differences between the two years were identified in five of the six species sampled. However, not all species that exhibited a temporally variable microbiome were functionally distinct across years, indicating functional redundancy within the mussel gut microbiome. Inferred biosynthesis pathways showed temporal variation in pathways involved in degradation, while pathways involved in cellular metabolism were stable. There was no evidence for phylosymbiosis across any facet of microbiome biodiversity. These results indicate that temporal variation is an important factor in the assembly of the gut microbiomes of freshwater mussels and provides further support that the mussel gut microbiome is involved in host development and activity.

17.
Ecology ; 101(9): e03100, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32443181

RESUMO

Functional traits are characteristics of an organism that represents how it interacts with its environment and can influence the structure and function of ecosystems. Ecological stoichiometry provides a framework to understand ecosystem structure and function by modeling the coupled flow of elements (e.g. carbon [C], nitrogen [N], phosphorus [P]) between consumers and their environment. Animals tend to be homeostatic in their nutrient requirements and preferentially sequester the element in shortest supply relative to demand, and release relatively more of the element in excess. Tissue stoichiometry is an important functional trait that allows for predictions among the elemental composition of animals, their diet, and their waste products, with important effects on the cycling and availability of nutrients in ecosystems. Here, we examined the tissue stoichiometric niches (C:N:P) and nutrient recycling stoichiometries (N:P) of several filter-feeding freshwater mussels in the subfamily Ambleminae. Despite occupying the same functional-feeding group and being restricted to a single subfamily-level radiation, we found that species occupied distinct stoichiometric niches and that these niches varied, in part, as a function of their evolutionary history. The relationship between phylogenetic divergence and functional divergence suggests that evolutionary processes may be shaping niche complementarity and resource partitioning. Tissue and excretion stoichiometry were negatively correlated as predicted by stoichiometric theory. When scaled to the community, higher species richness and phylogenetic diversity resulted in greater functional evenness and reduced functional dispersion. Filter-feeding bivalves are an ecologically important guild in freshwater ecosystems globally, and our study provides a more nuanced view of the stoichiometric niches and ecological functions performed by this phylogenetically and ecologically diverse assemblage.


Assuntos
Ecossistema , Fósforo , Animais , Água Doce , Nitrogênio , Filogenia
18.
PLoS One ; 14(11): e0224796, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31721801

RESUMO

Freshwater mussels are a species-rich group of aquatic invertebrates that are among the most endangered groups of fauna worldwide. As filter-feeders that are constantly exposed to new microbial inoculants, mussels represent an ideal system to investigate the effects of species or the environment on gut microbiome composition. In this study, we examined if host species or site exerts a greater influence on microbiome composition. Individuals of four co-occurring freshwater mussel species, Cyclonaias asperata, Fusconaia cerina, Lampsilis ornata, and Obovaria unicolor were collected from six sites along a 50 km stretch of the Sipsey River in Alabama, USA. High throughput 16S rRNA gene sequencing revealed that mussel gut bacterial microbiota were distinct from bacteria on seston suspended in the water column, and that the composition of the gut microbiota was influenced by both host species and site. Despite species and environmental variation, the most frequently detected sequences within the mussel microbiota were identified as members of the Clostridiales. Sequences identified as the nitrogen-fixing taxon Methylocystis sp. were also abundant in all mussel species, and sequences of both bacterial taxa were more abundant in mussels than in water. Site physicochemical conditions explained almost 45% of variation in seston bacterial communities but less than 8% of variation in the mussel bacterial microbiome. Together, these findings suggest selective retention of bacterial taxa by the freshwater mussel host, and that both species and the environment are important in determining mussel gut microbiome composition.


Assuntos
Filtração , Água Doce , Microbioma Gastrointestinal , Unionidae/microbiologia , Animais , Filogenia , Análise de Componente Principal , RNA Ribossômico 16S/genética , Rios , Especificidade da Espécie , Unionidae/genética
19.
Ecosystems ; 21: 521-535, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32461736

RESUMO

Differences in animal distributions and metabolic demands can influence energy and nutrient flow in an ecosystem. Through taxa-specific nutrient consumption, storage, and remineralization, animals may influence energy and nutrient pathways in an ecosystem. Here we show these taxa-specific traits can drive biogeochemical cycles of nutrients and alter ecosystem primary production and metabolism, using riverine systems that support heterogeneous freshwater mussel aggregations. Freshwater unionid mussels occur as distinct, spatially heterogeneous, dense aggregations in rivers. They may influence rates of production and respiration because their activities are spatially concentrated within given stream reaches. Previous work indicates that mussels influence nutrient limitation patterns, algal species composition, and producer and primary consumer biomass. Here, we integrate measures of organismal rates, stoichiometry, community-scaled rates, and ecosystem rates, to determine the relative source-sink nutrient dynamics of mussel aggregations and their influence on net ecosystem processes. We studied areas with and without mussel aggregations in three nitrogen-limited rivers in southeastern Oklahoma, USA. We measured respiration and excretion rates of mussels and collected a subset of samples for tissue chemistry and for thin sectioning of the shell to determine growth rates at each site. This allowed us to assess nutrient remineralization and nutrient sequestration by mussels. These rates were scaled to the community. We also measured stream metabolism at three sites with and without mussels. We demonstrated that mussel species have distinct stoichiometric traits, vary in their respiration rates, and that mussel aggregations influence nutrient cycling and productivity. Across all mussel aggregations, we found that mussels excreted more nitrogen than they sequestered into tissue and excreted more phosphorus than they sequestered except at one site. Furthermore, gross primary productivity was significantly greater at reaches with mussels. Collectively, our results indicate that mussels have ecosystem-level impacts on nutrient availability and production in nutrient-limited rivers. Within these streams, mussels are affecting the movement of nutrients and altering nutrient spiralling.

20.
Biol Rev Camb Philos Soc ; 92(4): 2003-2023, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28008706

RESUMO

The role of animals in modulating nutrient cycling [hereafter, consumer-driven nutrient dynamics (CND)] has been accepted as an important influence on both community structure and ecosystem function in aquatic systems. Yet there is great variability in the influence of CND across species and ecosystems, and the causes of this variation are not well understood. Here, we review and synthesize the mechanisms behind CND in fresh waters. We reviewed 131 articles on CND published between 1973 and 1 June 2015. The rate of new publications in CND has increased from 1.4 papers per year during 1973-2002 to 7.3 per year during 2003-2015. The majority of investigations are in North America with many concentrating on fish. More recent studies have focused on animal-mediated nutrient excretion rates relative to nutrient demand and indirect impacts (e.g. decomposition). We identified several mechanisms that influence CND across levels of biological organization. Factors affecting the stoichiometric plasticity of consumers, including body size, feeding history and ontogeny, play an important role in determining the impact of individual consumers on nutrient dynamics and underlie the stoichiometry of CND across time and space. The abiotic characteristics of an ecosystem affect the net impact of consumers on ecosystem processes by influencing consumer metabolic processes (e.g. consumption and excretion/egestion rates), non-CND supply of nutrients and ecosystem nutrient demand. Furthermore, the transformation and transport of elements by populations and communities of consumers also influences the flow of energy and nutrients across ecosystem boundaries. This review highlights that shifts in community composition or biomass of consumers and eco-evolutionary underpinnings can have strong effects on the functional role of consumers in ecosystem processes, yet these are relatively unexplored aspects of CND. Future research should evaluate the value of using species traits and abiotic conditions to predict and understand the effects of consumers on ecosystem-level nutrient dynamics across temporal and spatial scales. Moreover, new work in CND should strive to integrate knowledge from disparate fields of ecology and environmental science, such as physiology and ecosystem ecology, to develop a comprehensive and mechanistic understanding of the functional role of consumers. Comparative and experimental studies that develop testable hypotheses to challenge the current assumptions of CND, including consumer stoichiometric homeostasis, are needed to assess the significance of CND among species and across freshwater ecosystems.


Assuntos
Ecossistema , Cadeia Alimentar , Água Doce , Animais , Biomassa , Comportamento do Consumidor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA