Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 47(7): 1778-1781, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363733

RESUMO

Wavelength conversion at the single-photon level is required to forge a quantum network from distinct quantum devices. Such devices include solid-state emitters of single or entangled photons, as well as network nodes based on atoms or ions. Here we demonstrate the conversion of single photons emitted from a III-V semiconductor quantum dot at 853 nm via sum frequency conversion to the wavelength of the strong transition of Yb+ ions at 370 nm. We measure the second-order correlation function of both the unconverted and the converted photon and show that the single-photon character of the quantum dot emission is preserved during the conversion process.

2.
Nano Lett ; 14(1): 197-201, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24341867

RESUMO

Plasmonics offers the opportunity of tailoring the interaction of light with single quantum emitters. However, the strong field localization of plasmons requires spatial fabrication accuracy far beyond what is required for other nanophotonic technologies. Furthermore, this accuracy has to be achieved across different fabrication processes to combine quantum emitters and plasmonics. We demonstrate a solution to this critical problem by controlled positioning of plasmonic nanoantennas with an accuracy of 11 nm next to single self-assembled GaAs semiconductor quantum dots, whose position can be determined with nanometer precision. These dots do not suffer from blinking or bleaching or from random orientation of the transition dipole moment as colloidal nanocrystals do. Our method introduces flexible fabrication of arbitrary nanostructures coupled to single-photon sources in a controllable and scalable fashion.


Assuntos
Arsenicais/química , Arsenicais/efeitos da radiação , Gálio/química , Gálio/efeitos da radiação , Nanopartículas/química , Nanopartículas/efeitos da radiação , Pontos Quânticos , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Luz , Teste de Materiais , Nanopartículas/ultraestrutura , Tamanho da Partícula
3.
Nanotechnology ; 25(24): 245701, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24858014

RESUMO

Topological insulators (Bi2Se3) of single- and few-quintuple-layer (few-QLs) films were investigated by Raman spectroscopy and epitaxied on a GaAs substrate. At a measurement temperature of 80 K, we observed the emergence of additional A2u and Eu modes (Raman inactive in the bulk crystal) below 9-QLs film thicknesses, assigned to the crystal-symmetry breakdown in ultrathin films. Furthermore, the out-of-plane A1g modes changed in width, frequency, and intensity for decreasing numbers of QL, while the in-plane Eg mode split into three Raman lines, not resolved in previous room temperature experiments. The out-of-plane Raman modes showed a strong Raman resonance at 2.4 eV for around 4-QLs film thickness, and the resonant position of the same modes shifted to 2.2 eV for 18-QLs-thick film. The film thickness-dependence of the phonons frequencies cannot solely be explained within models of weak van der Waals interlayer coupling. The results are discussed in terms of stacking-induced changes in inter- and intralayer bonding and/or the presence of long-range Coulombic interlayer interactions in topological insulator Bi2Se3. This work demonstrates that Raman spectroscopy is sensitive to changes in film thickness over the critical range of 9- to 4-QLs, which coincides with the transition between a gapless topological insulator (occurring above 6-QLs) to a conventional gapped insulator (occurring below 4-QLs).

4.
Nano Lett ; 13(1): 213-8, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23245385

RESUMO

We fabricate inorganic thin film transistors with bending radii of less than 5 µm maintaining their high electronic performance with on-off ratios of more than 10(5) and subthreshold swings of 160 mV/dec. The fabrication technology relies on the roll-up of highly strained semiconducting nanomembranes, which compacts planar transistors into three-dimensional tubular architectures opening intriguing potential for microfluidic applications. Our technique probes the ultimate limit for the bending radius of high performance thin film transistors.

5.
Nano Lett ; 12(1): 453-7, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22171984

RESUMO

Increasingly complex structures such as optical antennas or cavities are coupled to self-assembled quantum dots to harvest their quantum-optical properties. In many cases, these structures pose a problem for common methods of ultrafast spectroscopy used to write and read out the state of the quantum dot. We present a pure far-field method that only requires optical access to the quantum dot and does not impose further restrictions on sample design. We demonstrate Rabi oscillations and perturbed free induction decay of single GaAs quantum dots that have a dipole moment as small as 18 D. Our method will greatly facilitate ultrafast spectroscopy of complex quantum-optical circuits.


Assuntos
Teste de Materiais/métodos , Pontos Quânticos , Análise Espectral/métodos
6.
Nano Lett ; 12(8): 4336-40, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22775149

RESUMO

Using scattering-type near-field infrared microscopy in combination with a free-electron laser, intersublevel transitions in buried single InAs quantum dots are investigated. The experiments are performed at room temperature on doped self-assembled quantum dots capped with a 70 nm GaAs layer. Clear near-field contrast of single dots is observed when the photon energy of the incident beam matches intersublevel transition energies, namely the p-d and s-d transition of conduction band electrons confined in the dots. The observed room-temperature line width of 5-8 meV of these resonances in the mid-infrared range is significantly below the inhomogeneously broadened spectral lines of quantum dot ensembles. The experiment highlights the strength of near-field microspectroscopy by demonstrating signals from bound-to-bound transitions of single electrons in a probe volume of the order of (100 nm)(3).

7.
Nano Lett ; 10(11): 4555-8, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20964391

RESUMO

We demonstrate how the controlled positioning of a plasmonic nanoparticle modifies the photoluminescence of a single epitaxial GaAs quantum dot. The antenna particle leads to an increase of the luminescence intensity by about a factor of 8. Spectrally and temporally resolved photoluminescence measurements prove an increase of the quantum dot's excitation rate.


Assuntos
Cristalização/métodos , Iluminação/métodos , Pontos Quânticos , Ressonância de Plasmônio de Superfície/métodos , Luz , Teste de Materiais , Doses de Radiação
8.
Nanotechnology ; 21(27): 274011, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20571198

RESUMO

Quantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission. Here we report of an electrically driven single-photon source emitting indistinguishable photons. The device consists of a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode. Indistinguishability of consecutive photons is tested in a two-photon interference experiment under two modes of operation, continuous and pulsed current injection. We also present a complete theory based on the interference of photons with a Lorentzian spectrum which we compare to both our continuous wave and pulsed experiments. In the former case, a visibility was measured limited only by the timing resolution of our detection system. In the case of pulsed injection, we employ a two-pulse voltage sequence which suppresses multi-photon emission and allows us to carry out temporal filtering of photons which have undergone dephasing. The characteristic Hong-Ou-Mandel 'dip' is measured, resulting in a visibility of 64 +/- 4%.

9.
Opt Express ; 17(25): 22452-61, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-20052169

RESUMO

Arrays of GaAs microring optical resonators with embedded InGaAs quantum dots (QDs) are placed on top of Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) piezoelectric actuators, which allow the microcavities to be reversibly "stretched" or "squeezed" by applying relatively large biaxial stresses at low temperatures. The emission energy of both QDs and optical modes red- or blue- shift depending on the strain sign, with the QD emission shifting more rapidly than the optical mode with applied strain. The QD energy shifts are used to estimate the strain in the structures based on linear deformation potential theory and the finite element method. The shift of the modes is attributed to both the physical deformation and the change in refractive index due to the photoelastic effect. Remarkably, excitonic emissions from different QDs are observed to shift at different rates, implying that this technique can be used to bring spatially separated excitons into resonance.


Assuntos
Dispositivos Ópticos , Pontos Quânticos , Refratometria/instrumentação , Desenho Assistido por Computador , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Iluminação/instrumentação
10.
Nat Commun ; 10(1): 126, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631078

RESUMO

The transmission of Cooper pairs between two weakly coupled superconductors produces a superfluid current and a phase difference; the celebrated Josephson effect. Because of time-reversal and parity symmetries, there is no Josephson current without a phase difference between two superconductors. Reciprocally, when those two symmetries are broken, an anomalous supercurrent can exist in the absence of phase bias or, equivalently, an anomalous phase shift φ0 can exist in the absence of a superfluid current. We report on the observation of an anomalous phase shift φ0 in hybrid Josephson junctions fabricated with the topological insulator Bi2Se3 submitted to an in-plane magnetic field. This anomalous phase shift φ0 is observed directly through measurements of the current-phase relationship in a Josephson interferometer. This result provides a direct measurement of the spin-orbit coupling strength and open new possibilities for phase-controlled Josephson devices made from materials with strong spin-orbit coupling.

11.
Sci Rep ; 8(1): 3415, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467499

RESUMO

Plasmon resonant arrays or meta-surfaces shape both the incoming optical field and the local density of states for emission processes. They provide large regions of enhanced emission from emitters and greater design flexibility than single nanoantennas. This makes them of great interest for engineering optical absorption and emission. Here we study the coupling of a single quantum emitter, a self-assembled semiconductor quantum dot, to a plasmonic meta-surface. We investigate the influence of the spectral properties of the nanoantennas and the position of the emitter in the unit cell of the structure. We observe a resonant enhancement due to emitter-array coupling in the far-field regime and find a clear difference from the interaction of an emitter with a single antenna.

12.
Nat Nanotechnol ; 10(6): 512-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25915197

RESUMO

The concept of Fourier synthesis is heavily used in both consumer electronic products and fundamental research. In the latter, pulse shaping is key to dynamically initializing, probing and manipulating the state of classical or quantum systems. In NMR, for instance, shaped pulses have a long-standing tradition and the underlying fundamental concepts have subsequently been successfully extended to optical frequencies and even to the implementation of quantum gate operations. Transferring these paradigms to nanomechanical systems requires tailored nanomechanical waveforms. Here, we report on an additive Fourier synthesizer for nanomechanical waveforms based on monochromatic surface acoustic waves. As a proof of concept, we electrically synthesize four different elementary nanomechanical waveforms from a fundamental surface acoustic wave at f1 ≈ 150 MHz using a superposition of up to three discrete harmonics. We use these shaped pulses to interact with an individual sensor quantum dot and detect their deliberately and temporally modulated strain component via the optomechanical quantum dot response. Importantly, and in contrast to direct mechanical actuation by bulk piezoactuators, surface acoustic waves provide much higher frequencies (>20 GHz; ref. 10) to resonantly drive mechanical motion. Thus, our technique uniquely allows coherent mechanical control of localized vibronic modes of optomechanical crystals, even in the quantum limit when cooled to the vibrational ground state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA