RESUMO
Nanophotonic materials enable unprecedented control of light-matter interactions, including the ability to dynamically steer or shape wavefronts. Consequently, nanophotonic systems such as metasurfaces have been touted as promising candidates for free-space optical communications, directed energy and additive manufacturing, which currently rely on slow mechanical scanners or electro-optical components for beam steering and shaping. However, such applications necessitate the ability to support high laser irradiances (> kW/cm2) and systematic studies on the high-power laser damage performance of nanophotonic materials and designs are sparse. Here, we experimentally investigate the pulsed laser-induced damage performance (at λ â¼ 1 µm) of model nanophotonic thin films including gold, indium tin oxide, and refractory materials such as titanium nitride and titanium oxynitride. We also model the spatio-thermal dissipation dynamics upon single-pulse illumination by anchoring experimental laser damage thresholds. Our findings show that gold exhibits the best laser damage resistance, but we argue that alternative materials such as transparent conducting oxides could be optimized to balance the tradeoff between damage resistance and optical tunability, which is critical for the design of thermally robust nanophotonic systems. We also discuss damage mitigation and ruggedization strategies for future device-scale studies and applications requiring high power beam manipulation.
RESUMO
Trigonal tellurium, a small-gap semiconductor with pronounced magneto-electric and magneto-optical responses, is among the simplest realizations of a chiral crystal. We have studied by spin- and angle-resolved photoelectron spectroscopy its unconventional electronic structure and unique spin texture. We identify Kramers-Weyl, composite, and accordionlike Weyl fermions, so far only predicted by theory, and show that the spin polarization is parallel to the wave vector along the lines in k space connecting high-symmetry points. Our results clarify the symmetries that enforce such spin texture in a chiral crystal, thus bringing new insight in the formation of a spin vectorial field more complex than the previously proposed hedgehog configuration. Our findings thus pave the way to a classification scheme for these exotic spin textures and their search in chiral crystals.