Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
Pharm Res ; 39(2): 353-367, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35166995

RESUMO

PURPOSE: The invention and application of new immunotherapeutic methods can compensate for the inefficiency of conventional cancer treatment approaches, partly due to the inhibitory microenvironment of the tumor. In this study, we tried to inhibit the growth of cancer cells and induce anti-tumor immune responses by silencing the expression of the ß-catenin in the tumor microenvironment and transmitting interleukin (IL)-15 cytokine to provide optimal conditions for the dendritic cell (DC) vaccine. METHODS: For this purpose, we used folic acid (FA)-conjugated SPION-carboxymethyl dextran (CMD) chitosan (C) nanoparticles (NPs) to deliver anti-ß-catenin siRNA and IL-15 to cancer cells. RESULTS: The results showed that the codelivery of ß-catenin siRNA and IL-15 significantly reduced the growth of cancer cells and increased the immune response. The treatment also considerably stimulated the performance of the DC vaccine in triggering anti-tumor immunity, which inhibited tumor development and increased survival in mice in two different cancer models. CONCLUSIONS: These findings suggest that the use of new nanocarriers such as SPION-C-CMD-FA could be an effective way to use as a novel combination therapy consisting of ß-catenin siRNA, IL-15, and DC vaccine to treat cancer.


Assuntos
Antineoplásicos/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Células Dendríticas/transplante , Portadores de Fármacos , Interleucina-15/administração & dosagem , Nanopartículas Magnéticas de Óxido de Ferro , Melanoma Experimental/terapia , RNA Interferente Pequeno/administração & dosagem , Terapêutica com RNAi , Neoplasias Cutâneas/terapia , beta Catenina/genética , Animais , Antineoplásicos/química , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/imunologia , Composição de Medicamentos , Feminino , Regulação Neoplásica da Expressão Gênica , Interleucina-15/química , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos Endogâmicos BALB C , RNA Interferente Pequeno/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral
2.
J Drug Deliv Sci Technol ; 67: 102899, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34630635

RESUMO

The inexorable coronavirus disease 2019 (COVID-19) pandemic with around 226 million people diagnosed and approximately 4.6 million deaths, is still moving toward more frightening statistics, calling for the urgent need to explore solutions for the current challenges in therapeutic and diagnostic approaches. The challenges associated with existing therapeutics in COVID-19 include lack of in vivo stability, efficacy, and safety. Nanoparticles (NPs) can offer a handful of tools to tackle these problems by enabling efficacious and safe delivery of both virus- and host-directed therapeutics. Furthermore, they can enable maximized clinical outcome while eliminating the chance of resistance to therapy by tissue-targeting and concomitant delivery of multiple therapeutics. The promising application of NPs as vaccine platforms is reflected by the major advances in developing novel COVID-19 vaccines. Two of the most critical COVID-19 vaccines are mRNA-based vaccines delivered via NPs, making them the first FDA-approved mRNA vaccines. Besides, NPs have been deployed as simple, rapid, and precise tools for point of care disease diagnosis. Not enough said NPs can also be exploited in novel ways to expedite the drug discovery process. In light of the above, this review discusses how NPs can overcome the hurdles associated with therapeutic and diagnostic approaches against COVID-19.

3.
Cancer Cell Int ; 21(1): 204, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849536

RESUMO

BACKGROUND: Relapse and metastasis in colorectal cancer (CRC) are often attributed to cancer stem-like cells (CSCs), as small sub-population of tumor cells with ability of drug resistance. Accordingly, development of appropriate models to investigate CSCs biology and establishment of effective therapeutic strategies is warranted. Hence, we aimed to assess the capability of two widely used and important colorectal cancer cell lines, HT-29 and Caco-2, in generating spheroids and their detailed morphological and molecular characteristics. METHODS: CRC spheroids were developed using hanging drop and forced floating in serum-free and non-attachment conditions and their morphological features were evaluated by scanning electron microscopy (SEM). Then, the potential of CSCs enrichment in spheroids was compared to their adherent counterparts by analysis of serial sphere formation capacity, real-time PCR of key stemness genes (KLF4, OCT4, SOX2, NANOG, C-MYC) and the expression of potential CRC-CSCs surface markers (CD166, CD44, and CD133) by flow cytometry. Finally, the expression level of some EMT-related (Vimentin, SNAIL1, TWIST1, N-cadherin, E-cadherin, ZEB1) and multi-drug resistant (ABCB1, ABCC1, ABCG2) genes was evaluated. RESULTS: Although with different morphological features, both cell lines were formed CSCs-enriched spheroids, indicated by ability to serial sphere formation, significant up-regulation of stemness genes, SOX2, C-MYC, NANOG and OCT4 in HT-29 and SOX2, C-MYC and KLF4 in Caco-2 spheroids (p-value < 0.05) and increased expression of CRC-CSC markers compared to parental cells (p-value < 0.05). Additionally, HT-29 spheroids exhibited a significant higher expression of both ABCB1 and ABCG2 (p-value = 0.02). The significant up-regulation of promoting EMT genes, ZEB1, TWIST1, E-cadherin and SNAIL1 in HT-29 spheroids (p-value = 0.03), SNAIL1 and Vimentin in Caco-2 spheroids (p-value < 0.05) and N-cadherin down-regulation in both spheroids were observed. CONCLUSION: Enrichment of CSC-related features in HT-29 and Caco-2 (for the first time without applying special scaffold/biochemical) spheroids, suggests spheroid culture as robust, reproducible, simple and cost-effective model to imitate the complexity of in vivo tumors including self-renewal, drug resistance and invasion for in vitro research of CRC-CSCs.

4.
Exp Eye Res ; 204: 108423, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33453276

RESUMO

Retinoblastoma (Rb) is the most common intraocular malignancy in children that accounts for approximately 4% of all pediatric malignancies. Since chemotherapy is a widely practiced treatment for Rb, there is a growing interest in developing new and effective drugs to overcome systemic and local side effects of chemotherapy to improve the quality of life and increase the chances of survival. This study sought to fabricate thiolated chitosan nanoparticles containing topotecan (TPH-TCs-NPs) with a view of enhancing drug loading and release control. This research was also designed to assess the ability of TPH-TCs-NPs to improve cell association, increase treatment efficacy in retinoblastoma cells and xenograft-rat-model of retinoblastoma, and overcome current topotecan hydrochloride (TPH) intravitreal administration challenges, including stability loss and poor cellular uptake. Modified ionic gelation method was optimized to fabricate TPH-TCs-NPs and TPH-TMC-NPs (N-trimethyl chitosan nanoparticles containing TPH). We characterized the NPs and quantified topotecan loading and release against a free TPH standard. The efficacy of TPH-NPs was quantified in human retinoblastoma cells (Y79) by XTT and flow cytometry measurement. In addition, Y79 cells were injected intravitreally in both eyes of immunodeficient wistar albino rats to create a xenograft-rat-model to compare the antitumor effectiveness of TPH-NPs and TPH by intravitreal administration. TPH-NPs complexation was confirmed by EDX, FTIR, and DSC techniques. TPH-TCs-NPs and TPH-TMC-NPs had high encapsulation efficiency (85.23 ± 2 and 73.34 ± 2% respectively). TPH-TCs-NPs showed a mean diameter, polidispersity index, and zeta potential of 25±2 nm, 0.21 ± 0.03 and +12 ± 2 mV, respectively. As a function of dose, TCs and TMC NPs were more efficacious than free topotecan (IC50s 53.17 and 85.88 nM, relative to 138.30 nM respectively, P = 0.012). Kruskal-Wallis test showed a statistically significant difference between the groups. Additionally, a significant difference between the tumor control and TPH-TCs-NPs treated group in xenograft-rat-model ( Range of P-value: 0.026 to 0.035) was shown by Bonferroni post hoc test. The current investigation demonstrated enhanced efficacy and association of TPH-TCs-NPs relative to free TPH in retinoblastoma cells and tumor in vitro and in vivo.


Assuntos
Antineoplásicos/administração & dosagem , Quitosana/administração & dosagem , Portadores de Fármacos , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Inibidores da Topoisomerase I/administração & dosagem , Topotecan/administração & dosagem , Animais , Varredura Diferencial de Calorimetria , Quitosana/química , Citometria de Fluxo , Humanos , Injeções Intravítreas , Masculino , Nanopartículas , Transplante de Neoplasias , Tamanho da Partícula , Ratos , Ratos Wistar , Neoplasias da Retina/patologia , Retinoblastoma/patologia , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Transplante Heterólogo , Resultado do Tratamento , Células Tumorais Cultivadas , Difração de Raios X
5.
Pharm Dev Technol ; 26(4): 381-389, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33538232

RESUMO

Targeted drug delivery is a tool to make treatment more specific, selective, and effective and to prevent unwanted complications. Prostate specific membrane antigen (PSMA) is a useful biomarker in order to monitor and control prostate cancer. Glutamate-Urea-R (Glu-Urea-R) is a PSMA enzyme inhibitor capable of binding to this surface marker of prostate cancer cell in an efficient and special manner. The aim of this project was to develop a docetaxel-loaded nanoparticle of poly (lactic-co-glycolic acid) polyethylene glycol which is cojugated to a urea-based anti-PSMA ligand named glutamate-urea-lysine (glu-urea-lys) for targeted delivery of docetaxel in prostate cancer. The obtained nanoparticles, prepared by nanoprecipitation method, were spheres with a particle size of around 150 nm and zeta potential of -7.08 mV. Uptake studies on the PC3 (as PSMA negative) and LNCaP (as PSMA positive) cells demonstrated that drug uptake was efficient by the PSMA positive cells. IC50 of targeted NPs on LNCaP cell line compared to non-targeted ones was reduced by more than 70% in three different incubation times of 24, 48, and 72 h. In conclusion, the nanoparticles are expected to specifically transport docetaxel to PSMA-positive prostate cancer cells and consequently, enhance the antitumor efficacy of docetaxel on these cells.


Assuntos
Antineoplásicos/administração & dosagem , Docetaxel/administração & dosagem , Nanopartículas , Neoplasias da Próstata/tratamento farmacológico , Antígenos de Superfície/metabolismo , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Docetaxel/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Glutamato Carboxipeptidase II/metabolismo , Ácido Glutâmico/química , Humanos , Concentração Inibidora 50 , Masculino , Tamanho da Partícula , Polietilenoglicóis/química , Poliglactina 910/química , Neoplasias da Próstata/patologia , Fatores de Tempo , Ureia/química
6.
J Cell Physiol ; 235(3): 2049-2059, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31364167

RESUMO

RNA interference is one of the prosperous approaches for cancer treatment. However, small interfering RNA (siRNA) delivery to cancer cells has been faced with various challenges restricting their clinical application over the decades. Since ROR1 is an onco-embryonic gene overexpressed in many malignancies, suppression of ROR1 by siRNA can potentially fight cancer. Herein, a delivery system for ROR1 siRNA based on HIV-1 TAT peptide-capped gold nanoparticles (GNPs) was developed to treat breast cancer. Besides, we introduced a new feasible method for conjugating the peptide to the nanoparticles. Since the GNPs have high affinity to the sulfur, the findings demonstrated the peptide successfully conjugated to the nanoparticles via Au-S bonds. As positively charged nanoparticles showed high cellular uptake, we could use a low concentration of nanoparticles led to high efficient gene transfection with negligible cytotoxicity that was confirmed by flow cytometry, confocal microscopy, gel retardation, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Following transfection, downregulation of ROR1 and its targeted gene, CCND1, induced apoptosis in cancer cells. In conclusion, the reported capped GNPs could be potentially utilized for delivering negatively charged therapeutic agents in particular genes.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Apoptose/genética , Linhagem Celular Tumoral , Ciclina D1/genética , Técnicas de Transferência de Genes , HIV-1/metabolismo , Humanos , Imobilização/fisiologia , Transfecção/métodos
7.
J Cell Physiol ; 235(12): 10068-10080, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32488862

RESUMO

Inhibitory immune checkpoint (ICP) molecules are important immunosuppressive factors in a tumor microenvironment (TME). They can robustly suppress T-cell-mediated antitumor immune responses leading to cancer progression. Among the checkpoint molecules, cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) is one of the critical inhibitors of anticancer T-cell responses. Besides, the expression of adenosine receptor (A2AR) on tumor-infiltrating T cells potently reduces their function. We hypothesized that concomitant silencing of these molecules in T cells might lead to enhanced antitumor responses. To examine this assumption, we purified T cells from the tumor, spleen, and local lymph nodes of CT26 colon cancer-bearing mice and suppressed the expression of A2AR and CTLA-4 using the small interfering RNA (siRNA)-loaded polyethylene glycol-chitosan-alginate (PCA) nanoparticles. The appropriate physicochemical properties of the produced nanoparticles (NPs; size of 72 nm, polydispersive index [PDI] < 0.2, and zeta potential of 11 mV) resulted in their high efficiency in transfection and suppression of target gene expression. Following the silencing of checkpoint molecules, various T-cell functions, including proliferation, apoptosis, cytokine secretion, differentiation, and cytotoxicity were analyzed, ex vivo. The results showed that the generated nanoparticles had optimal physicochemical characteristics and significantly suppressed the expression of target molecules in T cells. Moreover, a concomitant blockade of A2AR and CTLA-4 in T cells could synergistically enhance antitumor responses through the downregulation of PKA, SHP2, and PP2Aα signaling pathways. Therefore, this combination therapy can be considered as a novel promising anticancer therapeutic strategy, which should be further investigated in subsequent studies.


Assuntos
Antígeno CTLA-4/genética , Neoplasias do Colo/terapia , Nanopartículas/química , Receptor A2A de Adenosina/genética , Alginatos/química , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Antígeno CTLA-4/antagonistas & inibidores , Linhagem Celular Tumoral , Quitosana/química , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Polietilenoglicóis/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Microambiente Tumoral/efeitos dos fármacos
8.
J Cell Physiol ; 235(12): 9702-9717, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32424937

RESUMO

There is an interconnected network between S1P/sphingosine-1-phosphate receptor 1 (S1PR1), IL-6/glycoprotein 130 (GP130), and signal transducer and activator of transcription 3 (STAT3) signaling pathways in the tumor microenvironment, which leads to cancer progression. S1P/S1PR1 and IL-6/GP130 signaling pathways phosphorylate and activate STAT3, and it then induces the expression of S1PR1 and interleukin-6 (IL-6) in a positive feedback loop leading to cancer progression. We hypothesized that blockade of this amplification loop can suppress the growth and development of cancer cells. Therefore, we silenced STAT3 upstream molecules including the S1PR1 and GP130 molecules in cancer cells using small interfering RNA (siRNA)-loaded alginate-conjugated trimethyl chitosan (ATMC) nanoparticles (NPs). The generated NPs had competent properties including the appropriate size, zeta potential, polydispersity index, morphology, high uptake of siRNA, high rate of capacity, high stability, and low toxicity. We evaluated the effects of siRNA loaded ATMC NPs on tumor hallmarks of three murine-derived cancer cell lines, including 4T1 (breast cancer), B16-F10 (melanoma), and CT26 (colon cancer). The results confirmed the tumor-suppressive effects of combinational targeting of S1PR1 and GP130. Moreover, combination therapy could potently suppress tumor growth as assessed by the chick chorioallantoic membrane assay. In this study, we targeted this positive feedback loop for the first time and applied this novel combination therapy, which provides a promising approach for cancer treatment. The development of a potent nanocarrier system with ATMC for this combination was also another aspect of this study, which should be further investigated in cancer animal models in further studies.


Assuntos
Neoplasias da Mama/genética , Receptor gp130 de Citocina/genética , Melanoma Experimental/genética , RNA Interferente Pequeno/farmacologia , Receptores de Esfingosina-1-Fosfato/genética , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Quitosana/química , Quitosana/farmacologia , Receptor gp130 de Citocina/antagonistas & inibidores , Sistemas de Liberação de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/genética , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Nanopartículas/química , Pró-Proteína Convertases/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/genética , Serina Endopeptidases/genética , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos
9.
Immunology ; 159(1): 75-87, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31587253

RESUMO

Dendritic cell (DC) -based cancer immunotherapy is one of the most important anti-cancer immunotherapies, and has been associated with variable efficiencies in different cancer types. It is well-known that tumor microenvironment plays a key role in the efficacy of various immunotherapies such as DC vaccine. Accordingly, the expression of programmed death ligand 1 (PD-L1) on DCs, which interacts with PD-1 on T cells, leads to inhibition of anti-tumor responses following presentation of tumor antigens by DCs to T cells. Therefore, we hypothesized that down-regulation of PD-L1 in DCs in association with silencing of PD-1 on T cells may lead to the enhancement of T-cell priming by DCs to have efficient anti-tumor T-cell responses. In this study, we silenced the expression of PD-L1 in DCs and programmed cell death protein 1 (PD-1) in T cells by small interfering RNA (siRNA) -loaded chitosan-dextran sulfate nanoparticles (NPs) and evaluated the DC phenotypic and functional characteristics and T-cell functions following tumor antigen recognition on DCs, ex vivo. Our results showed that synthesized NPs had good physicochemical characteristics (size 77·5 nm and zeta potential of 14·3) that were associated with efficient cellular uptake and target gene silencing. Moreover, PD-L1 silencing was associated with stimulatory characteristics of DCs. On the other hand, presentation of tumor antigens by PD-L1-negative DCs to PD-1-silenced T cells led to induction of potent T-cell responses. Our findings imply that PD-L1-silenced DCs can be considered as a potent immunotherapeutic approach in combination with PD-1-siRNA loaded NPs, however; further in vivo investigation is required in animal models.


Assuntos
Antígeno B7-H1/imunologia , Neoplasias da Mama/terapia , Vacinas Anticâncer/imunologia , Neoplasias do Colo/terapia , Células Dendríticas/transplante , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/imunologia , Terapêutica com RNAi , Linfócitos T/imunologia , Animais , Apoptose , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Cocultura , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos BALB C , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo
10.
Pharm Res ; 37(10): 196, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32944844

RESUMO

PURPOSE: Hypoxia-inducible factor (HIF) is one of the critical components of the tumor microenvironment that is involved in tumor development. HIF-1α functionally and physically interacts with CDK1, 2, and 5 and stimulates the cell cycle progression and Cyclin-Dependent Kinase (CDK) expression. Therefore, hypoxic tumor microenvironment and CDK overexpression lead to increased cell cycle progression and tumor expansion. Therefore, we decided to suppress cancer cell expansion by blocking HIF-1α and CDK molecules. METHODS: In the present study, we used the carboxylated graphene oxide (CGO) conjugated with trimethyl chitosan (TMC) and hyaluronate (HA) nanoparticles (NPs) loaded with HIF-1α-siRNA and Dinaciclib, the CDK inhibitor, for silencing HIF-1α and blockade of CDKs in CD44-expressing cancer cells and evaluated the impact of combination therapy on proliferation, metastasis, apoptosis, and tumor growth. RESULTS: The results indicated that the manufactured NPs had conceivable physicochemical properties, high cellular uptake, and low toxicity. Moreover, combination therapy of cancer cells using CGO-TMC-HA NPs loaded with HIF-1α siRNA and Dinaciclib (SCH 727965) significantly suppressed the CDKs/HIF-1α and consequently, decreased the proliferation, migration, angiogenesis, and colony formation in tumor cells. CONCLUSIONS: These results indicate the ability of CGO-TMC-HA NPs for dual drug/gene delivery in cancer treatment. Furthermore, the simultaneous inhibition of CDKs/HIF-1α can be considered as a novel anti-cancer treatment strategy; however, further research is needed to confirm this treatment in vivo. Graphical Abstract The suppression of HIF-1α and CDKs inhibits cancer growth. HIF-1α is overexpressed by the cells present in the tumor microenvironment. The hypoxic environment elevates mitochondrial ROS production and increases p38 MAP kinase, JAK/STAT, ERK, JNK, and Akt/PI3K signaling, resulting in cyclin accumulation and aberrant cell cycle progression. Furthermore, the overexpression of HIF-1α/CDK results in increased expression of genes such as BCL2, Bcl-xl, Ki-67, TGFß, VEGF, FGF, MMP2, MMP9, and, HIF-1α and consequently raise the survival, proliferation, angiogenesis, metastasis, and invasion of tumor cells. In conclusion, HIF-1α-siRNA/Dinaciclib-loaded CGO-TMC-HA NPs can inhibit the tumor expansion by blockage of CDKs and HIF-1α (JAK: Janus kinase, STAT: Signal transducer and activator of transcription, MAPK: mitogen-activated protein kinase, ERK: extracellular signal-regulated kinase, JNK: c-Jun N-terminal kinase, PI3K: phosphatidylinositol 3-kinase).


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Experimentais/terapia , Compostos de Piridínio/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Quitosana/química , Óxidos N-Cíclicos , Grafite/química , Ácido Hialurônico/química , Indolizinas , Camundongos , Nanopartículas/química , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Compostos de Piridínio/química , Compostos de Piridínio/farmacocinética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacocinética
11.
Nanomedicine ; 26: 102181, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32169399

RESUMO

As vascular endothelial growth factor in choroidal neovascularization is a major cause of visual loss of the elderlies and diabetics, gene therapy may offer an alternative treatment. However, siRNA instability and inefficient delivery are the main hindrances. To address this issue, we developed a nano-sized siRNA loaded therapeutic delivery system. The chitosan-hyaluronic acid nano-polyplexes were prepared by the modified ionic gelation method. The obtained nano-polyplex with a narrow size distribution, indicated no significant cytotoxicity in the MTT test and proper cellular uptake in confocal images. The RT-PCR analysis indicated remarkable gene silencing on HUVEC cells. The intravitreally administered nano-polyplexes in rabbits overcame both the vitreous and retina barriers and reached the posterior tissues efficiently. Intravitreal injections of the VEGFR-2 siRNA nano-polyplexes significantly reduced the size of the laser-induced choroidal neovascularization, compared to the control group. Consequently, the developed formulation can be a promising candidate for intravitreal delivery of siRNA.


Assuntos
Quitosana/farmacologia , Neovascularização de Coroide/tratamento farmacológico , RNA Interferente Pequeno/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Quitosana/química , Neovascularização de Coroide/genética , Neovascularização de Coroide/patologia , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Injeções Intravítreas , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
12.
Nanomedicine ; 29: 102240, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32553948

RESUMO

Overexpression of adenosine in the tumor region leads to suppression of various immune cells, particularly T cells through ligation with adenosine 2a receptor (A2aR). In this study, we intended to increase the efficacy of tumor lysate-loaded DC vaccine by silencing the expression of A2aR on T cells through the application of A2aR-specific siRNA-loaded PEG-chitosan-lactate (PCL) nanoparticles (NPs) in the 4T1 breast tumor-bearing mice. Combination therapy by DC vaccine and siRNA-loaded NPs markedly induced tumor regression and increased survival time of mice. These ameliorative effects were partly via downregulation of immunosuppressive cells, increased function of cytotoxic T lymphocytes, and induction of immune-stimulatory cytokines. Moreover, combination therapy could markedly suppress angiogenesis and metastasis processes. These results imply the efficacy of novel combination therapy for the treatment of breast cancer by using A2aR siRNA-loaded NPs and DC vaccine which can be translated into the initial phase of clinical trials in the near future.


Assuntos
Neoplasias da Mama/terapia , Neoplasias Mamárias Animais/terapia , Nanopartículas/química , Receptor A2A de Adenosina/genética , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/farmacologia , Linhagem Celular Tumoral , Quitosana/química , Quitosana/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoterapia , Ácido Láctico/química , Ácido Láctico/farmacologia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia
13.
J Cell Physiol ; 234(4): 4702-4712, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30191977

RESUMO

Chemical burns are a major cause of corneal haze and blindness. Corticosteroids are commonly used after corneal burns to attenuate the severity of the inflammation-related fibrosis. While research efforts have been aimed toward application of novel therapeutics. In the current study, a novel drug delivery system based nanostructured lipid carriers (NLCs) were designed to treat corneal alkaline burn injury. Rapamycin, a potent inhibitor of mammalian target of rapamycin pathway, was loaded in NLCs (rapa-NLCs), and the NLCs were characterized. Cell viability assay, cellular uptake of NLCs, and in vitro evaluation of the fibrotic/angiogenic genes suppression by rapa-NLCs were carried out on human isolated corneal fibroblasts. Immunohistochemistry (IHC) assays were also performed after treatment of murine model of corneal alkaline burn with rapa-NLCs. According to the results, rapamycin was efficiently loaded in NLCs. NLCs could enhance coumarin-6 fibroblast uptake by 1.5 times. Rapa-NLCs efficiently downregulated platelet-derived growth factor and transforming growth factor beta genes in vitro. Furthermore, proliferation of fibroblasts, a major cause of corneal haze after injury, reduced. IHC staining of treated cornea with alpha-smooth muscle actin and CD34 + antibodies showed efficient prevention of myofibroblasts differentiation and angiogenesis, respectively. In conclusion, ocular delivery of rapamycin using NLCs after corneal injury may be considered as a promising antifibrotic/angiogenic treatment approach to preserve patient eyesight.


Assuntos
Queimaduras Químicas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Córnea/efeitos dos fármacos , Lesões da Córnea/tratamento farmacológico , Opacidade da Córnea/tratamento farmacológico , Portadores de Fármacos , Queimaduras Oculares/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Lipídeos/química , Nanopartículas , Sirolimo/administração & dosagem , Administração Oftálmica , Animais , Queimaduras Químicas/etiologia , Queimaduras Químicas/metabolismo , Queimaduras Químicas/patologia , Células Cultivadas , Córnea/metabolismo , Córnea/patologia , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/metabolismo , Lesões da Córnea/patologia , Neovascularização da Córnea/induzido quimicamente , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/patologia , Neovascularização da Córnea/prevenção & controle , Opacidade da Córnea/induzido quimicamente , Opacidade da Córnea/metabolismo , Opacidade da Córnea/patologia , Modelos Animais de Doenças , Composição de Medicamentos , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/metabolismo , Queimaduras Oculares/patologia , Fibroblastos/metabolismo , Fibrose , Humanos , Masculino , Camundongos Endogâmicos BALB C , Nanomedicina , Sirolimo/química , Hidróxido de Sódio , Cicatrização/efeitos dos fármacos
14.
J Cell Physiol ; 234(11): 20554-20565, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31144311

RESUMO

Gene therapy, including small interfering RNA (siRNA) technology, is one of the leading strategies that help to improve the outcomes of the current therapeutic systems against HIV-1 infection. The successful therapeutic application of siRNAs requires their safe and efficient delivery to specific cells. Here, we introduce a superparamagnetic iron oxide nanoparticle (SPION) for delivering siRNA against HIV-1 nef (anti-nef siRNA) into two cell lines, HEK293 and macrophage RAW 264.7. SPIONs were coated with trimethyl chitosan (TMC), and thereafter, different concentrations of SPION-TMC were coated with different ratios of a carboxymethyl dextran (CMD) to modify the physicochemical properties and improve the biological properties of the nanocarriers. The nanoparticles exhibited a spherical shape with an average size of 112 nm. The obtained results showed that the designed delivery route enhanced the uptake of siRNA into both HEK293 and RAW 264.7 cells compared with control groups. Moreover, CMD-TMC-SPIONs containing anti-nef siRNA significantly reduced the expression of HIV-1 nef in HEK293 stable cells. The modified siRNA-loaded SPIONs also displayed no toxicity or apoptosis-inducing effects on the cells. The CMD-TMC-SPIONs are suggested as potential nanocarriers for siRNA delivery in gene therapy of HIV-1 infection.


Assuntos
Quitosana/química , Dextranos/química , Compostos Férricos/química , Técnicas de Transferência de Genes , Nanopartículas Metálicas/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Células RAW 264.7 , RNA Interferente Pequeno , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
15.
J Cell Physiol ; 233(10): 7165-7177, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29741783

RESUMO

CD73 facilitates tumor growth by upregulation of the adenosine (immunosuppressive factor) in the tumor microenvironment, however, its precise molecular mechanisms is not precisely understood. Regarding the importance of angiogenesis in tumor development and spreading, we decided to assign the anti-angiogenic effects of CD73 suppression. We used chitosan lactate (ChLa) nanoparticles (NPs) to deliver CD73-specific small interfering RNA (siRNA) into cancer cells. Our results showed that treatment of the 4T1 cells with CD73-specific siRNA-loaded NPs led to potent inhibition of cancer cell proliferation and cell cycle arrest, in vitro. This growth arrest was correlated with downregulation of angiogenesis-related molecules including vascular endothelial growth factor (VEGF)-A, VEGF-R2, interleukin (IL)-6, and transforming growth factor (TGF)-ß. Moreover, administration of NPs loaded with CD73-siRNA into 4T1 breast cancer-bearing mice led to tumor regression and increased mice survival time accompanied with downregulation of angiogenesis (VEGF-A, VEGF-R2, VE-Cadherin, and CD31) and lymphangiogenesis (VEGF-C and LYVE-1)-related genes in the tumor site. Furthermore, the expression of angiogenesis promoting factors including IL-6, TGF-ß, signal transducer, and activator of transcription (STAT)3, hypoxia inducible factor (HIF)-1α, and cyclooxygenase (COX)2 was decreased after the CD73 suppression in mice. Moreover, analysis of leukocytes derived from the tumor samples, spleen, and regional lymph nodes showed that they had lower capability for secretion of angiogenesis promoting factors after CD73-silencing. These results indicate that suppression of tumor development by downregulation of CD73 is in part related to angiogenesis arrest. These findings imply a promising strategy for inhibiting tumor growth accompanied with suppressing the angiogenesis process.


Assuntos
5'-Nucleotidase/genética , Inibidores da Angiogênese/farmacologia , Neoplasias da Mama/genética , Neovascularização Patológica/genética , Animais , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , RNA Interferente Pequeno/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
17.
Nanomedicine ; 14(6): 1891-1903, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29885900

RESUMO

Recent insights into the nanomedicine have revealed that nanoplatforms enhance the efficacy of carrier in therapeutic applications. Here, multifunctional nanoplatforms were utilized in miRNA-101 delivery and NIR thermal therapy to induce apoptosis in breast cancer cells. Au nanorods (NRs) or nanospheres (NSs) covered with graphene oxide (GO) were prepared and functionalized with polyethylene glycol as a stabilizer and poly-L-arginine (P-L-Arg) as a targeting agent. In nanoplatforms, coupling Au@GO prepared stable structures with higher NIR reactivity. P-L-Arg substantially enhanced the cellular uptake and gene retardation of stuffs coated by them. However, rod-shape nanoplatforms indicated better performance in cellular uptake and gene transfection than spherical ones. NIR thermal therapy was implemented to improve gene release and in synergy with miRNA-101 activated the apoptotic pathway and decreased the viability of breast cancer cell (<20%). Briefly, presented delivery systems are potentially efficient in distinguishing cancer cells, miRNA internalization and controlling apoptosis of cancer cells.


Assuntos
Neoplasias da Mama/terapia , Ouro/química , Grafite/química , Hipertermia Induzida , MicroRNAs/administração & dosagem , Nanotubos , Fototerapia , Proliferação de Células , Terapia Combinada , Sistemas de Liberação de Medicamentos , Feminino , Humanos , MicroRNAs/genética , Células Tumorais Cultivadas
20.
Pathophysiology ; 24(3): 123-131, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28629694

RESUMO

Interleukin-6 (IL-6) is a multifunctional cytokine that affects a variety of cells in the body such as osteoclasts, hepatocytes, endothelial cells, epithelial cells, white and red blood cells and etc. Elevated levels of IL-6 have been detected in many ocular diseases. Studies show that IL-6 has a major role in the pathology of glaucoma, CRVO, macular edema, ocular neovascularization, posterior capsule opacity formation, keratitis, dry eye disease, allergic eye disease, ocular autoimmune disease, corneal chemical burn, ocular inflammation and so on. IL-6 does its effects through the classic or trans-signal pathways in cells. Blocking of IL-6 signal pathways via Tocilizumab or other chemicals and therapeutics will help to overcome complications related to ocular diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA