Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Hepatology ; 69(2): 760-773, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29357190

RESUMO

Current blood biomarkers are suboptimal in detecting drug-induced liver injury (DILI) and predicting its outcome. We sought to characterize the natural variabilty and performance characteristics of 14 promising DILI biomarker candidates. Serum or plasma from multiple cohorts of healthy volunteers (n = 192 and n = 81), subjects who safely took potentially hepatotoxic drugs without adverse effects (n = 55 and n = 92) and DILI patients (n = 98, n = 28, and n = 143) were assayed for microRNA-122 (miR-122), glutamate dehydrogenase (GLDH), total cytokeratin 18 (K18), caspase cleaved K18, glutathione S-transferase α, alpha-fetoprotein, arginase-1, osteopontin (OPN), sorbitol dehydrogenase, fatty acid binding protein, cadherin-5, macrophage colony-stimulating factor receptor (MCSFR), paraoxonase 1 (normalized to prothrombin protein), and leukocyte cell-derived chemotaxin-2. Most candidate biomarkers were significantly altered in DILI cases compared with healthy volunteers. GLDH correlated more closely with gold standard alanine aminotransferase than miR-122, and there was a surprisingly wide inter- and intra-individual variability of miR-122 levels among healthy volunteers. Serum K18, OPN, and MCSFR levels were most strongly associated with liver-related death or transplantation within 6 months of DILI onset. Prediction of prognosis among DILI patients using the Model for End-Stage Liver Disease was improved by incorporation of K18 and MCSFR levels. Conclusion: GLDH appears to be more useful than miR-122 in identifying DILI patients, and K18, OPN, and MCSFR are promising candidates for prediction of prognosis during an acute DILI event. Serial assessment of these biomarkers in large prospective studies will help further delineate their role in DILI diagnosis and management.


Assuntos
Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Adulto , Estudos de Casos e Controles , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
2.
Proc Natl Acad Sci U S A ; 114(51): E10881-E10889, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203651

RESUMO

Interpretation of positive genotoxicity findings using the current in vitro testing battery is a major challenge to industry and regulatory agencies. These tests, especially mammalian cell assays, have high sensitivity but suffer from low specificity, leading to high rates of irrelevant positive findings (i.e., positive results in vitro that are not relevant to human cancer hazard). We developed an in vitro transcriptomic biomarker-based approach that provides biological relevance to positive genotoxicity assay data, particularly for in vitro chromosome damage assays, and propose its application for assessing the relevance of the in vitro positive results to carcinogenic hazard. The transcriptomic biomarker TGx-DDI (previously known as TGx-28.65) readily distinguishes DNA damage-inducing (DDI) agents from non-DDI agents. In this study, we demonstrated the ability of the biomarker to classify 45 test agents across a broad set of chemical classes as DDI or non-DDI. Furthermore, we assessed the biomarker's utility in derisking known irrelevant positive agents and evaluated its performance across analytical platforms. We correctly classified 90% (9 of 10) of chemicals with irrelevant positive findings in in vitro chromosome damage assays as negative. We developed a standardized experimental and analytical protocol for our transcriptomics biomarker, as well as an enhanced application of TGx-DDI for high-throughput cell-based genotoxicity testing using nCounter technology. This biomarker can be integrated in genetic hazard assessment as a follow-up to positive chromosome damage findings. In addition, we propose how it might be used in chemical screening and assessment. This approach offers an opportunity to significantly improve risk assessment and reduce cost.


Assuntos
Biomarcadores , Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Testes de Mutagenicidade , Transcriptoma , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Células Cultivadas , Aberrações Cromossômicas , Dano ao DNA , Marcadores Genéticos , Humanos , Reprodutibilidade dos Testes , Medição de Risco
3.
Adv Exp Med Biol ; 856: 243-257, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27671726

RESUMO

The field of transcriptomics has expanded rapidly during the last decades. This methodology provides an exceptional framework to study not only molecular changes underlying the adverse effects of a given compound, but also to understand its Mode of Action (MoA). However, the implementation of transcriptomics-based tests within the regulatory arena is not a straightforward process. One of the major obstacles in their regulatory implementation is still the interpretation of this new class of data and the judgment of the level of confidence of these tests. A key element in the regulatory acceptance of transcriptomics-based tests is validation, which still represents a major challenge. Although important advances have been made in the development and standardisation of such tests, to date there is limited experience with their validation. Taking into account the experience acquired so far, this chapter describes those aspects that were identified as important in the validation process of transcriptomics-based tests, including the assessment of standardisation, reliability and relevance. It also critically discusses the challenges posed to validation in relation to the specific characteristics of these approaches and their application in the wider context of testing strategies.


Assuntos
Técnicas In Vitro , Transcriptoma , Estudos de Validação como Assunto , Biologia Computacional , Reprodutibilidade dos Testes , Projetos de Pesquisa
4.
Crit Rev Toxicol ; 45(1): 1-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25605026

RESUMO

Toxicogenomics is proposed to be a useful tool in human health risk assessment. However, a systematic comparison of traditional risk assessment approaches with those applying toxicogenomics has never been done. We conducted a case study to evaluate the utility of toxicogenomics in the risk assessment of benzo[a]pyrene (BaP), a well-studied carcinogen, for drinking water exposures. Our study was intended to compare methodologies, not to evaluate drinking water safety. We compared traditional (RA1), genomics-informed (RA2) and genomics-only (RA3) approaches. RA2 and RA3 applied toxicogenomics data from human cell cultures and mice exposed to BaP to determine if these data could provide insight into BaP's mode of action (MOA) and derive tissue-specific points of departure (POD). Our global gene expression analysis supported that BaP is genotoxic in mice and allowed the development of a detailed MOA. Toxicogenomics analysis in human lymphoblastoid TK6 cells demonstrated a high degree of consistency in perturbed pathways with animal tissues. Quantitatively, the PODs for traditional and transcriptional approaches were similar (liver 1.2 vs. 1.0 mg/kg-bw/day; lungs 0.8 vs. 3.7 mg/kg-bw/day; forestomach 0.5 vs. 7.4 mg/kg-bw/day). RA3, which applied toxicogenomics in the absence of apical toxicology data, demonstrates that this approach provides useful information in data-poor situations. Overall, our study supports the use of toxicogenomics as a relatively fast and cost-effective tool for hazard identification, preliminary evaluation of potential carcinogens, and carcinogenic potency, in addition to identifying current limitations and practical questions for future work.


Assuntos
Benzo(a)pireno/toxicidade , Medição de Risco/métodos , Toxicogenética/métodos , Animais , Carcinógenos/toxicidade , Água Potável/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Genômica/métodos , Humanos , Camundongos , Especificidade da Espécie
5.
Drug Chem Toxicol ; 37(2): 204-12, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24128070

RESUMO

Polypeptide antibiotics, such as polymyxins and aminoglycosides, are essential for treatment of life-threatening Gram-negative infections. Acute kidney injury (AKI) attributed to treatment with these agents severely limits their clinical application. Because standard biomarkers (serum creatinine [sCRE] and blood urea nitrogen [BUN]) feature limited sensitivity, the development of novel biomarkers of AKI is important. Here, we compared the performance of standard and emerging biomarkers of AKI for the detection of nephrotoxicity caused by polymyxin B across multiple species (rat, dog and monkey). Further, we applied a biomarker-driven strategy for selection of new kidney-sparing polymyxin analogs. Polymyxin B treatment produced dose-dependent kidney injury observed as proximal tubular degeneration/regeneration and necrosis across all species. Dogs and monkeys had similar biomarker profiles that included increases of both standard (sCRE and BUN) and emerging (urinary neutrophil gelatinase-associated Lipocalin [NGAL] and urinary kidney injury molecule 1 [KIM-1]) biomarkers of AKI. In contrast, only urinary NGAL and urinary KIM-1 were sufficiently capable of detecting kidney injury in rats. Because rats provide a feasible model for screening compounds in drug development, we utilized urinary NGAL as a sensitive biomarker of AKI to screen and rank order compounds in a 2-day toxicity study. To our knowledge, this study provides a first example of successfully applying biomarkers of AKI in drug development.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Proteínas de Fase Aguda/urina , Antibacterianos/toxicidade , Lipocalinas/urina , Polimixina B/toxicidade , Proteínas Proto-Oncogênicas/urina , Injúria Renal Aguda/fisiopatologia , Animais , Biomarcadores/urina , Cães , Relação Dose-Resposta a Droga , Desenho de Fármacos , Feminino , Lipocalina-2 , Macaca fascicularis , Masculino , Ratos , Ratos Wistar , Especificidade da Espécie
6.
Nat Rev Neurol ; 20(7): 426-439, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866966

RESUMO

Anti-amyloid treatments for early symptomatic Alzheimer disease have recently become clinically available in some countries, which has greatly increased the need for biomarker confirmation of amyloid pathology. Blood biomarker (BBM) tests for amyloid pathology are more acceptable, accessible and scalable than amyloid PET or cerebrospinal fluid (CSF) tests, but have highly variable levels of performance. The Global CEO Initiative on Alzheimer's Disease convened a BBM Workgroup to consider the minimum acceptable performance of BBM tests for clinical use. Amyloid PET status was identified as the reference standard. For use as a triaging test before subsequent confirmatory tests such as amyloid PET or CSF tests, the BBM Workgroup recommends that a BBM test has a sensitivity of ≥90% with a specificity of ≥85% in primary care and ≥75-85% in secondary care depending on the availability of follow-up testing. For use as a confirmatory test without follow-up tests, a BBM test should have performance equivalent to that of CSF tests - a sensitivity and specificity of ~90%. Importantly, the predictive values of all biomarker tests vary according to the pre-test probability of amyloid pathology and must be interpreted in the complete clinical context. Use of BBM tests that meet these performance standards could enable more people to receive an accurate and timely Alzheimer disease diagnosis and potentially benefit from new treatments.


Assuntos
Doença de Alzheimer , Biomarcadores , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons/normas , Tomografia por Emissão de Pósitrons/métodos , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/líquido cefalorraquidiano
7.
Front Toxicol ; 4: 991590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211197

RESUMO

Genotoxicity testing relies on the detection of gene mutations and chromosome damage and has been used in the genetic safety assessment of drugs and chemicals for decades. However, the results of standard genotoxicity tests are often difficult to interpret due to lack of mode of action information. The TGx-DDI transcriptomic biomarker provides mechanistic information on the DNA damage-inducing (DDI) capability of chemicals to aid in the interpretation of positive in vitro genotoxicity data. The CometChip® assay was developed to assess DNA strand breaks in a higher-throughput format. We paired the TGx-DDI biomarker with the CometChip® assay in TK6 cells to evaluate three model agents: nitrofurantoin (NIT), metronidazole (MTZ), and novobiocin (NOV). TGx-DDI was analyzed by two independent labs and technologies (nCounter® and TempO-Seq®). Although these anti-infective drugs are, or have been, used in human and/or veterinary medicine, the standard genotoxicity testing battery showed significant genetic safety findings. Specifically, NIT is a mutagen and causes chromosome damage, and MTZ and NOV cause chromosome damage in conventional in vitro tests. Herein, the TGx-DDI biomarker classified NIT and MTZ as non-DDI at all concentrations tested, suggesting that NIT's mutagenic activity is bacterial specific and that the observed chromosome damage by MTZ might be a consequence of in vitro test conditions. In contrast, NOV was classified as DDI at the second highest concentration tested, which is in line with the fact that NOV is a bacterial DNA-gyrase inhibitor that also affects topoisomerase II at high concentrations. The lack of DNA damage for NIT and MTZ was confirmed by the CometChip® results, which were negative for all three drugs except at overtly cytotoxic concentrations. This case study demonstrates the utility of combining the TGx-DDI biomarker and CometChip® to resolve conflicting genotoxicity data and provides further validation to support the reproducibility of the biomarker.

8.
Drug Chem Toxicol ; 34(4): 433-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21740348

RESUMO

Aminoglycoside antibiotics have been in use since 1944 with the discovery of streptomycin. The aim of this study was to derive a new, highly resistant multicopy neo(R) transgenic mouse strain, named TgN3Ems, by random insertion of the plasmid, pPGKneobpA, and compare the level of drug resistance of wild-type and transgenic mice in vivo and corresponding primary mouse embryonic fibroblasts (MEFs) in vitro to a model neomycin analog, G418. The expression neoR in transgenic animals caused a 5-fold increase in the approximate lethal dose of G418, compared to wild type. No adverse pathological changes were found for the transgenic mice treated with G418, as they all died within minutes after injection. In contrast, the G418 treatment of wild-type mice resulted in a marked liver and kidney toxicity detected microscopically and via increases of serum biomarkers for liver and kidney damage. In addition, there was a mild bone marrow and lymphoid depletion. In in vitro studies, the transgenic MEFs survived 20-fold higher G418 levels, compared to the wild-type MEF cells. Therefore, TgN3Ems transgenic mice could be used as a source of G418-resistant feeder cells for gene targeting. Since the expression of drug-resistance genes in transgenic animals confers resistance to toxicity, the TgN3Ems mice might serve as a tool applicable in drug design.


Assuntos
Resistência a Medicamentos/genética , Células Alimentadoras/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Marcação de Genes , Gentamicinas/toxicidade , Canamicina Quinase/genética , Animais , Southern Blotting , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Células Alimentadoras/citologia , Células Alimentadoras/enzimologia , Fibroblastos/citologia , Fibroblastos/enzimologia , Gentamicinas/farmacologia , Dose Letal Mediana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasmídeos , Regiões Promotoras Genéticas , Testes de Toxicidade Aguda , Transgenes
9.
Clin Pharmacol Drug Dev ; 10(7): 734-747, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33331142

RESUMO

Disease-drug-drug interactions (DDDIs) have been identified in some inflammatory diseases in which elevated proinflammatory cytokines can downregulate the expression of cytochrome P450 (CYP) enzymes, potentially increasing systemic exposure to drugs metabolized by CYPs. Following anti-inflammatory treatments, CYP expression may return to normal, resulting in reduced drug exposure and diminished clinical efficacy. Vedolizumab has a well-established positive benefit-risk profile in patients with ulcerative colitis (UC) or Crohn's disease (CD) and has no known systemic immunosuppressive activity. A stepwise assessment was conducted to evaluate the DDDI potential of vedolizumab to impact exposure to drugs metabolized by CYP3A through cytokine modulation. First, a review of published data revealed that patients with UC or CD have elevated cytokine concentrations relative to healthy subjects; however, these concentrations remained below those reported to impact CYP expression. Exposure to drugs metabolized via CYP3A also appeared comparable between patients and healthy subjects. Second, serum samples from patients with UC or CD who received vedolizumab for 52 weeks were analyzed and compared with healthy subjects. Cytokine concentrations and the 4ß-hydroxycholesterol-to-cholesterol ratio, an endogenous CYP3A4 biomarker, were comparable between healthy subjects and patients both before and during vedolizumab treatment. Finally, a medical review of postmarketing DDDI cases related to vedolizumab from the past 6 years was conducted and did not show evidence of any true DDDIs. Our study demonstrated the lack of clinically meaningful effects of disease or vedolizumab treatment on the exposure to drugs metabolized via CYP3A through cytokine modulation in patients with UC or CD.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Colite Ulcerativa/tratamento farmacológico , Doença de Crohn/tratamento farmacológico , Fármacos Gastrointestinais/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacologia , Estudos de Casos e Controles , Citocromo P-450 CYP3A/efeitos dos fármacos , Citocromo P-450 CYP3A/metabolismo , Citocinas/metabolismo , Bases de Dados Factuais , Interações Medicamentosas , Fármacos Gastrointestinais/efeitos adversos , Fármacos Gastrointestinais/farmacologia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos
10.
PLoS One ; 15(10): e0240562, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33035276

RESUMO

Glutamate dehydrogenase (GLDH) is a liver-specific biomarker of hepatocellular damage currently undergoing qualification as a drug development tool. Since GLDH is located within the mitochondrial matrix, it has been hypothesized that it might also be useful in assessing mitotoxicity as an initiating event during drug-induced liver injury. According to this hypothesis, hepatocyte death that does not involve primary mitochondrial injury would result in release of intact mitochondria into circulation that could be removed by high speed centrifugation and result in lower GLDH activity measured in spun serum vs un-spun serum. A single prior study in mice has provided some support for this hypothesis. We sought to repeat and extend the findings of this study. Accordingly, mice were treated with the known mitochondrial toxicant, acetaminophen (APAP), or with furosemide (FS), a toxicant believed to cause hepatocyte death through mechanisms not involving mitotoxicity as initiating event. We measured GLDH levels in fresh plasma before and after high speed centrifugation to remove intact mitochondria. We found that both APAP and FS treatments caused substantial hepatocellular necrosis that correlated with plasma alanine aminotransferase (ALT) and GLDH elevations. The plasma GLDH activity in both the APAP- and FS- treated mice was not affected by high-speed centrifugation. Interestingly, the ratio of GLDH:ALT was 5-fold lower during FS compared to APAP hepatotoxicity. Electron microscopy confirmed that both APAP- and FS-treatments had resulted in mitochondrial injury. Mitochondria within vesicles were only observed in the FS-treated mice raising the possibility that mitophagy might account for reduced release of GLDH in the FS-treated mice. Although our results show that plasma GLDH is not clinically useful for evaluating mitotoxicity, the GLDH:ALT ratio as a measure of mitophagy needs to be further studied.


Assuntos
Alanina Transaminase/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Furosemida/efeitos adversos , Glutamato Desidrogenase/sangue , Mitocôndrias Hepáticas , Mitofagia/efeitos dos fármacos , Acetaminofen/efeitos adversos , Animais , Biomarcadores/sangue , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo
11.
Am J Case Rep ; 21: e919289, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32086430

RESUMO

BACKGROUND Acetaminophen overdose is the most common cause of acute liver failure. Nevertheless, new biomarker approaches enabling early prediction of the outcome of the acetaminophen overdose are needed. Recently, using next-generation sequencing analysis of serum from human study participants we uncovered injury-specific signatures of circulating microRNAs (miRNAs) that represented underlying molecular mechanisms of toxicity. This case study is first to show the application of miRNA profiling to assess prognosis of acetaminophen poisoning. CASE REPORT The patient was admitted to the hospital following supra therapeutic acetaminophen ingestion. The patient showed elevated levels of biomarkers of hepatocellular injury alanine aminotransferase, aspartate transaminase, and glutamate dehydrogenase. Even though treatment with N-acetyl cysteine was initiated 24 hours post-ingestion, levels of alanine-aminotransferase and aspartate transaminase peaked at about 40 hours post ingestion of acetaminophen. We analyzed global circulating miRNA levels from 24 consecutive serum samples from this study participant covering the period from admission to time of death. CONCLUSIONS The resulting global miRNA profiles were compared with profiles from study participants with non-lethal acetaminophen poisoning and healthy controls. At the admission, the miRNA profiles of both lethal and non-lethal acetaminophen poisoning showed induction of cellular stress and oxidative damage. Later, the miRNA profiles of the lethal poisoning featured fibrosis and coagulation pathways while profiles of non-lethal cases resembled those of healthy study participants. Although additional confirmatory studies are needed, our case study is first to indicate that global miRNA profiles to be used as liquid biopsies have potential to facilitate the assessment of acetaminophen poisoning.


Assuntos
Acetaminofen/intoxicação , Doença Hepática Induzida por Substâncias e Drogas/sangue , Overdose de Drogas/sangue , Biópsia Líquida , MicroRNAs/sangue , Adulto , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Overdose de Drogas/diagnóstico , Evolução Fatal , Feminino , Humanos
12.
Inflamm Bowel Dis ; 26(10): 1498-1508, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32840322

RESUMO

BACKGROUND: Currently, 2 coprimary end points are used by health authorities to determine the effectiveness of therapeutic interventions in patients with Crohn's disease (CD): symptomatic remission (patient-reported outcome assessment) and endoscopic remission (ileocolonoscopy). However, there is lack of accepted biomarkers to facilitate regulatory decision-making in the development of novel therapeutics for the treatment of CD. METHODS: With support from the Helmsley Charitable Trust, Critical Path Institute formed the Crohn's Disease Biomarkers preconsortium (CDBpC) with members from the pharmaceutical industry, academia, and nonprofit organizations to evaluate the CD biomarker landscape. Biomarkers were evaluated based on biological relevance, availability of biomarker assays, and clinical validation data. RESULTS: The CDBpC identified the most critical need as pharmacodynamic/response biomarkers to monitor disease activity in response to therapeutic intervention. Fecal calprotectin (FC) and serum C-reactive protein (CRP) were identified as biomarkers ready for the regulatory qualification process. A number of exploratory biomarkers and potential panels of these biomarkers was also identified for additional development. Given the different factors involved in CD and disease progression, a combination of biomarkers, including inflammatory, tissue injury, genetic, and microbiome-associated biomarkers, will likely have the most utility. CONCLUSIONS: The primary focus of the Inflammatory Bowel Disease Regulatory Science Consortium will be development of exploratory biomarkers and the qualification of FC and CRP for IBD. The Inflammatory Bowel Disease Regulatory Science Consortium, focused on tools to support IBD drug development, will operate in the precompetitive space to share data, biological samples for biomarker testing, and assay information for novel biomarkers.


Assuntos
Proteína C-Reativa/análise , Tomada de Decisão Clínica/métodos , Doença de Crohn/diagnóstico , Monitoramento de Medicamentos/métodos , Complexo Antígeno L1 Leucocitário/análise , Biomarcadores/análise , Consenso , Doença de Crohn/metabolismo , Doença de Crohn/terapia , Descoberta de Drogas , Fezes/química , Humanos , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
13.
PLoS One ; 15(5): e0229753, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407333

RESUMO

Serum activities of alanine and aspartate aminotransferases (ALT and AST) are used as gold standard biomarkers for the diagnosis of hepatocellular injury. Since ALT and AST lack liver specificity, the diagnosis of the onset of hepatocellular injury in patients with underlying muscle impairments is severely limited. Thus, we evaluated the potential of glutamate dehydrogenase (GLDH) as a liver specific alternative biomarker of hepatocellular injury. In our study, serum GLDH in subjects with Duchene muscular dystrophy (DMD) was equivalent to serum GLDH in age matched healthy subjects, while serum ALT was increased 20-fold in DMD subjects. Furthermore, serum GLDH in 131 subjects with variety of muscle impairments was similar to serum GLDH of healthy subjects while serum ALT corelated with serum creatine kinase, a widely accepted biomarker of muscle impairment. In addition, significant elevations of ALT, AST, and CK were observed in a case of a patient with rhabdomyolysis, while serum GLDH stayed within the normal range until the onset of hypoxia-induced liver injury. In a mouse model of DMD (DMDmdx), serum GLDH but not serum ALT clearly correlated with the degree of acetaminophen-induced liver injury. Taken together, our data support the utility of serum GLDH as a liver-specific biomarker of liver injury that has a potential to improve diagnosis of hepatocellular injury in patients with underlying muscle impairments. In drug development, GLDH may have utility as a biomarker of drug induced liver injury in clinical trials of new therapies to treat muscle diseases such as DMD.


Assuntos
Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Glutamato Desidrogenase/sangue , Distrofia Muscular de Duchenne/sangue , Acetaminofen/efeitos adversos , Adolescente , Adulto , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/complicações , Doença Hepática Induzida por Substâncias e Drogas/patologia , Criança , Pré-Escolar , Creatina Quinase/sangue , Modelos Animais de Doenças , Diagnóstico Precoce , Feminino , Humanos , Hipóxia/sangue , Hipóxia/complicações , Fígado/lesões , Fígado/patologia , Masculino , Camundongos , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/patologia , Rabdomiólise/sangue , Rabdomiólise/complicações , Rabdomiólise/patologia
14.
Genes (Basel) ; 11(11)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105679

RESUMO

Non-alcoholic fatty liver disease (NAFLD) and atherosclerosis-related cardiovascular diseases (CVD) share common metabolic pathways. We explored the association between three NAFLD-associated single nucleotide polymorphisms (SNPs) rs738409, rs10401969, and rs1260326 with sub-clinical atherosclerosis estimated by the carotid intima-media thickness (c-IMT) and the inter-adventitia common carotid artery diameter (ICCAD) in patients free from clinically overt NAFLD and CVD. The study population is the IMPROVE, a multicenter European study (n = 3711). C-IMT measures and ICCAD were recorded using a standardized protocol. Linear regression with an additive genetic model was used to test for association of the three SNPs with c-IMT and ICCAD. In secondary analyses, the association of the three SNPs with c-IMT and ICCAD was tested after stratification by alanine aminotransferase levels (ALT). No associations were found between rs738409, rs1260326, rs10401969, and c-IMT or ICCAD. Rs738409-G and rs10401969-C were associated with ALT levels (p < 0.001). In patients with ALT levels above 28 U/L (highest quartile), we observed an association between rs10401969-C and c-IMT measures of c-IMTmax and c-IMTmean-max (p = 0.018 and 0.021, respectively). In conclusion, NAFLD-associated SNPs do not associate with sub-clinical atherosclerosis measures. However, our results suggest a possible mediating function of impaired liver function on atherosclerosis development.


Assuntos
Aterosclerose/genética , Artérias Carótidas/fisiologia , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo de Nucleotídeo Único/genética , Idoso , Alanina Transaminase/sangue , Substituição de Aminoácidos/genética , Espessura Intima-Media Carotídea , Feminino , Estudos de Associação Genética , Humanos , Masculino
15.
Mutagenesis ; 24(5): 433-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19581339

RESUMO

We have developed the bioluminescent Salmonella reverse mutation assay as a tool for detecting mutagenicity applicable for high-throughput screening of new chemicals. In this study, we report the inter-laboratory evaluation of the assay using 10 model chemicals in five independent laboratories located in the USA (Groton, CT; Cambridge, MA and La Jolla, CA), Europe (Sandwich, Kent, UK) and Asia (Nagoya, Japan). The studies were performed in blinded fashion in all sites except for Groton and Cambridge laboratories. The chemicals were tested in at least three independent experiments using strains TA98-lux and TA100-lux in the presence and absence of metabolic activation. The results were statistically evaluated and compared to published results. Seven of the 10 compounds were positive in either TA98-lux and/or TA100-lux in the presence or absence of metabolic activation. The positive compound set included: nitrofurazone, 3-3'-dimethoxybenzidine, benzo[a]pyrene, 1,4-benzoquinone dioxime, 2-amino-5-nitrophenol, 2-bromo-4,6-dinitroaniline and busulfan. The remaining three compounds, namely, anthracene, crystal violet and benzyl chloride were negative in both Salmonella strains. Final results for individual compounds yielded 100% agreement among the laboratories and published data. Detailed comparison of all 40 individual test conditions yielded 93% (37 of 40) agreement among participating laboratories. We conclude that the bioluminescent Salmonella reverse mutation assay is a robust, accurate and economical higher throughput assay applicable for the mutagenicity screening of chemicals.


Assuntos
Medições Luminescentes , Mutagênicos/toxicidade , Mutação/efeitos dos fármacos , Mutação/genética , Salmonella/efeitos dos fármacos , Salmonella/genética , Laboratórios , Testes de Mutagenicidade
16.
Bioorg Med Chem Lett ; 19(6): 1559-63, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19246199

RESUMO

The biochemical basis for S9-dependent mutagenic response of the 5-HT(2C) receptor agonist and diazinylpiperazine derivative 1 in the Salmonella Ames assay involves P450-mediated bioactivation to DNA-reactive quinone-methide, aldehyde and nitrone intermediates. Mechanistic information pertaining to the metabolism of 1 was used in the design of diazinylpiperazine 5 to eliminate the safety liability. While 5 was negative in the Ames assay, the compound retained the ability of 1 to form certain electrophilic intermediates. Plausible hypotheses that can collectively account for the differences in mutagenic response of the two piperazine analogs are discussed.


Assuntos
Química Farmacêutica/métodos , Piperazinas/química , Agonistas do Receptor 5-HT2 de Serotonina , Amidas/química , Cromatografia/métodos , Desenho de Fármacos , Modelos Químicos , Mutagênese , Testes de Mutagenicidade , Mutagênicos , Mutação , NADP/química , Piperazina , Reprodutibilidade dos Testes , Salmonella/metabolismo
17.
Bioorg Med Chem Lett ; 19(8): 2220-3, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19285862

RESUMO

A highly ligand efficient lead molecule was rapidly developed into a DPP-IV selective candidate series using focused small library synthesis. A significant hurdle for series advancement was genetic safety since some agents in this series impaired chromosome division that was detected using the in vitro micronucleus assay. A recently developed high-throughput imaging-based in vitro micronucleus assay enabled the identification of chemical space with a low probability of micronucleus activity. Advanced profiling of a subset within this space identified a compound with a clean safety profile, an acceptable human DPP-IV inhibition profile based on the rat PK/PD model and a projected human dose that was suitable for clinical development.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Inibidores da Dipeptidil Peptidase IV , Inibidores da Dipeptidil Peptidase IV/síntese química , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dipeptidil Peptidase 4/sangue , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Cães , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Fenetilaminas/química , Fenetilaminas/farmacologia , Fenetilaminas/uso terapêutico , Piperidinas/química , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Ratos
18.
Toxicol Lett ; 186(1): 36-44, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18822359

RESUMO

Specific genotoxic events such as gene mutations and/or chromosome damage are considered hallmarks of cancer. The genotoxicity testing battery enables relatively simple, rapid and inexpensive hazard identification, namely by assessing a chemical's ability to cause genetic damage in cells. In addition, the 2-year rodent carcinogenicity bioassay provides an assessment of a risk associated with the chemical to develop cancer in animals. Although the link between genotoxicity and carcinogenicity is well documented, this relationship is complicated due to the impact of non-genotoxic mechanisms of carcinogenesis and by character of the in vitro genotoxicity assays and specific endpoints making the interpretation of test results in light of human risk and relevance difficult. In particular, the specificity of test results has been questioned. Therefore, the development of novel scientific approaches bridging genotoxicity and carcinogenicity testing via understanding underlying mechanisms is extremely important for facilitating cancer risk assessment. In this respect, toxicogenomics approaches are considered promising as these have the potential of providing generic insight in molecular pathway responses. The goal of this report thus is to review recent progress in the development and application of toxicogenomics to the derivation of genomic biomarkers associated with mechanisms of genotoxicity and carcinogenesis. Furthermore, the potential for application of genomic approaches to hazard identification and risk assessment is explored.


Assuntos
Carcinógenos/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Mutagênicos/toxicidade , Mutação/efeitos dos fármacos , Toxicogenética/métodos , Animais , Testes de Carcinogenicidade , Carcinógenos/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Testes de Mutagenicidade , Mutagênicos/metabolismo , Medição de Risco
19.
Mutat Res ; 681(2-3): 230-240, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19010444

RESUMO

While scientific knowledge of the potential health significance of chemical exposures has grown, experimental methods for predicting the carcinogenicity of environmental agents have not been substantially updated in the last two decades. Current methodologies focus first on identifying genotoxicants under the premise that agents capable of directly damaging DNA are most likely to be carcinogenic to humans. Emphasis on the distinction between genotoxic and non-genotoxic carcinogens is also motivated by assumed implications for the dose-response curve; it is purported that genotoxicants would lack a threshold in the low dose region, in contrast to non-genotoxic agents. However, for the vast majority of carcinogens, little if any empirical data exist to clarify the nature of the cancer dose-response relationship at low doses in the exposed human population. Recent advances in scientific understanding of cancer biology-and increased appreciation of the multiple impacts of carcinogens on this disease process-support the view that environmental chemicals can act through multiple toxicity pathways, modes and/or mechanisms of action to induce cancer and other adverse health outcomes. Moreover, the relationship between dose and a particular outcome in an individual could take multiple forms depending on genetic background, target tissue, internal dose and other factors besides mechanisms or modes of action; inter-individual variability and susceptibility in response are, in turn, key determinants of the population dose-response curve. New bioanalytical approaches (e.g., transcriptomics, proteomics, and metabolomics) applied in human, animal and in vitro studies could better characterize a wider array of hazard traits and improve the ability to predict the potential carcinogenicity of chemicals.


Assuntos
Carcinógenos/toxicidade , Toxicogenética/métodos , Relação Dose-Resposta a Droga , Humanos , Conhecimento , Epidemiologia Molecular , Neoplasias/etiologia
20.
Front Big Data ; 2: 36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33693359

RESUMO

Genotoxicity testing is an essential component of the safety assessment paradigm required by regulatory agencies world-wide for analysis of drug candidates, and environmental and industrial chemicals. Current genotoxicity testing batteries feature a high incidence of irrelevant positive findings-particularly for in vitro chromosomal damage (CD) assays. The risk management of compounds with positive in vitro findings is a major challenge and requires complex, time consuming, and costly follow-up strategies including animal testing. Thus, regulators are urgently in need of new testing approaches to meet legislated mandates. Using machine learning, we identified a set of transcripts that responds predictably to DNA-damage in human cells that we refer to as the TGx-DDI biomarker, which was originally referred to as TGx-28.65. We proposed to use this biomarker in conjunction with current genotoxicity testing batteries to differentiate compounds with irrelevant "false" positive findings in the in vitro CD assays from true DNA damaging agents (i.e., for de-risking agents that are clastogenic in vitro but not in vivo). We validated the performance of the TGx-DDI biomarker to identify true DNA damaging agents, assessed intra- and inter- laboratory reproducibility, and cross-platform performance. Recently, to augment the application of this biomarker, we developed a high-throughput cell-based genotoxicity testing system using the NanoString nCounter® technology. Here, we review the status of TGx-DDI development, its integration in the genotoxicity testing paradigm, and progress to date in its qualification at the US Food and Drug Administration (FDA) as a drug development tool. If successfully validated and implemented, the TGx-DDI biomarker assay is expected to significantly augment the current strategy for the assessment of genotoxic hazards for drugs and chemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA