Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38930179

RESUMO

Loose-fill thermal composite insulation produced from surface-modified wood scobs has been explored as a potential fire-resistant material for building envelopes. This work involves fire resistance behavior comparisons between four coating systems consisting of liquid glass, liquid glass-tung oil, liquid glass-expandable graphite, and liquid glass-tung oil-expandable graphite. The techniques of thermogravimetric and differential thermogravimetric analyses, gross heat combustion via a calorimetric bomb, cone calorimetry, SEM imaging of char residues, and energy dispersive spectrometry for elemental analysis, as well as propensity to undergo continuous smoldering, were implemented. The coating technique resulted in greater thermal stability at a higher temperature range (500-650 °C) of the resulting loose-fill thermal composite insulation, reduced flame-damaged area heights after the exposure of samples at 45° for 15 s and 30 s, with a maximum of 49% decreased gross heat combustion, reduced heat release and total smoke release rates, improved char residue layer formation during combustion and changed smoldering behavior due to the formation of homogeneous and dense carbon layers. The results showed that the highest positive impact was obtained using the liquid glass and liquid glass-expandable graphite system because of the ability of the liquid glass to cover the wood scob particle surface and form a stable and strong expanding carbon layer.

2.
Materials (Basel) ; 16(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37176206

RESUMO

The current study presents the results of monitoring the behavior of loose-fill thermal insulating material for buildings made of wood scobs (WS), which were coated with one, two, and three component-based coatings from liquid glass (LG), tung oil (TO), and expandable graphite (EG). The thermal conductivity of samples in the dry state and under normal laboratory conditions, short-term water absorption by partial immersion, surface wettability, and water vapor permeability were evaluated, and regression equations describing the variations in numerical values of specified properties under different amounts of each coating component were presented. It was shown that LG and TO act as hydrophobic layers that, in conjunction, reduce water absorption by a maximum of 274%, have a contact angle equal to 86°, and lower thermal conductivity by 55% in the dry state due to the specifics of the layer formed on the surface of WS. The addition of EG to LG coating resulted in insignificantly changed water absorption and thermal conductivity values, indicating the potential of this material to be used to improve the fire resistance of wood-based composites in the future. The results showed that the three-component layer of LG/TO/EG reduces water absorption by a maximum of 72%, increases thermal conductivity in the dry state by a minimum of 0.4%, and increases the contact angle to 81° at 100 wt.% LG. The changes in water vapor permeability of all compositions were determined to be insignificant.

3.
Materials (Basel) ; 13(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255683

RESUMO

Currently, the recycling potential of wood waste (WW) is still limited, and in a resource efficiency approach, recycling WW in insulation materials, such as polyurethane (PUR), appears as an appropriate solution. It is known that the quality of WW is the main aspect which influences the stability of the final products. Therefore, the current study analyses different WW-based fillers as possible modifiers for polyurethane biocomposite foams for the application as loose-fill materials in building envelopes. During the study of WW-based fillers, it was determined that the most promising filler is wood scobs (WS) with a thermal conductivity of 0.0496 W/m·K, short-term water absorption by partial immersion-12.5 kg/m2, water vapour resistance-0.34 m2·h·Pa/mg and water vapour diffusion resistance factor-2.4. In order to evaluate the WS performance as a filler in PUR biocomposite foams, different ratios of PUR binder and WS filler (PURb/WS) were selected. It was found that a 0.40 PURb/WS ratio is insufficient for the appropriate wetting of WS filler while a 0.70 PURb/WS ratio produced PUR biocomposite foams with the most suitable performance: thermal conductivity reduced from 0.0523 to 0.0476 W/m·K, water absorption-from 5.6 to 1.3 kg/m2, while the compressive strength increased from 142 to 272 kPa and the tensile strength increased from 44 to 272 kPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA