Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Environ Toxicol Chem ; 43(5): 1097-1111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488680

RESUMO

The ASTM International standard test method for freshwater mussels (E2455-13) recommends 4-week toxicity testing with juveniles to evaluate chronic effects on survival and growth. However, concerns remain that the method may not adequately address the sensitivity of mussels to longer term exposures (>4 weeks), particularly in relation to potential reproductive impairments. No standard method directly evaluates toxicant effects on mussel reproduction. The objectives of the present study were to (1) evaluate toxicity endpoints related to reproduction in fatmucket (Lampsilis siliquoidea) using two common reference toxicants, potassium chloride (KCl) and nickel (Ni); (2) evaluate the survival and growth of juvenile fatmucket in standard 4-week and longer term (12-week) KCl and Ni tests following a method refined from the standard method; and (3) compare the sensitivity of the reproductive endpoints with the endpoints obtained from the juvenile mussel tests. Reproductive toxicity tests were conducted by first exposing female fatmucket brooding mature larvae (glochidia) to five test concentrations of KCl and Ni for 6 weeks. Subsamples of the glochidia were then removed from the adults to determine three reproductive endpoints: (1) the viability of brooded glochidia; (2) the viability of free glochidia in a 24-h exposure to the same toxicant concentrations as their mother; and (3) the success of glochidia parasitism on host fish. Mean viability of brooded glochidia was significantly reduced in the high KCl concentration (26 mg K/L) relative to the control, with a 20% effect concentration (EC20) of 14 mg K/L, but there were no significant differences between the control and any Ni treatment (EC20 > 95 µg Ni/L). The EC20s for viability of free glochidia after the additional 24-h exposure and parasitism success were similar to the EC20s of brooded glochidia. The EC20s based on the most sensitive biomass endpoint in the 4-week juvenile tests were 15 mg K/L and 91 µg Ni/L, similar to or greater than the EC20s from the reproductive KCl and Ni tests, respectively. When exposure duration in the juvenile tests was extended from 4 to 12 weeks, the EC20s decreased by more than 50% in the KCl test but by only 8% in the Ni test. Overall, these results indicate that a standard 4-week test with juvenile mussels can prove effective for estimating effects in chronic exposures with different life stages although a longer term 12-week exposure with juvenile mussels may reveal higher sensitivity of mussels to some toxicants, such as KCl. Environ Toxicol Chem 2024;43:1097-1111. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Níquel , Cloreto de Potássio , Reprodução , Poluentes Químicos da Água , Animais , Níquel/toxicidade , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Cloreto de Potássio/toxicidade , Feminino , Bivalves/efeitos dos fármacos , Bivalves/crescimento & desenvolvimento , Unionidae/efeitos dos fármacos , Unionidae/crescimento & desenvolvimento
2.
Environ Toxicol Chem ; 40(12): 3392-3409, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34592004

RESUMO

The US Environmental Protection Agency's short-term freshwater effluent test methods include a fish (Pimephales promelas), a cladoceran (Ceriodaphnia dubia), and a green alga (Raphidocelis subcapitata). There is a recognized need for additional taxa to accompany the three standard species for effluent testing. An appropriate additional taxon is unionid mussels because mussels are widely distributed, live burrowed in sediment and filter particles from the water column for food, and exhibit high sensitivity to a variety of contaminants. Multiple studies were conducted to develop a relevant and robust short-term test method for mussels. We first evaluated the comparative sensitivity of two mussel species (Villosa constricta and Lampsilis siliquoidea) and two standard species (P. promelas and C. dubia) using two mock effluents prepared by mixing ammonia and five metals (cadmium, copper, nickel, lead, and zinc) or a field-collected effluent in 7-day exposures. Both mussel species were equally or more sensitive (more than two-fold) to effluents compared with the standard species. Next, we refined the mussel test method by first determining the best feeding rate of a commercial algal mixture for three age groups (1, 2, and 3 weeks old) of L. siliquoidea in a 7-day feeding experiment, and then used the derived optimal feeding rates to assess the sensitivity of the three ages of juveniles in a 7-day reference toxicant (sodium chloride [NaCl]) test. Juvenile mussels grew substantially (30%-52% length increase) when the 1- or 2-week-old mussels were fed 2 ml twice daily and the 3-week-old mussels were fed 3 ml twice daily. The 25% inhibition concentrations (IC25s) for NaCl were similar (314-520 mg Cl/L) among the three age groups, indicating that an age range of 1- to 3-week-old mussels can be used for a 7-day test. Finally, using the refined test method, we conducted an interlaboratory study among 13 laboratories to evaluate the performance of a 7-day NaCl test with L. siliquoidea. Eleven laboratories successfully completed the test, with more than 80% control survival and reliable growth data. The IC25s ranged from 296 to 1076 mg Cl/L, with a low (34%) coefficient of variation, indicating that the proposed method for L. siliquoidea has acceptable precision. Environ Toxicol Chem 2021;40:3392-3409. © 2021 SETAC.


Assuntos
Bivalves , Unionidae , Poluentes Químicos da Água , Animais , Água Doce , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
3.
Environ Toxicol Chem ; 28(11): 2367-77, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19572770

RESUMO

The influence of dissolved organic carbon (DOC) and water composition on the toxicity of copper to juvenile freshwater mussels (fatmucket, Lampsilis siliquoidea) were evaluated in natural and reconstituted waters. Acute 96-h copper toxicity tests werec onducted at four nominal DOC concentrations (0, 2.5, 5, and 10 mg/L as carbon [C]) in dilutions of natural waters and in American Society for Testing and Materials (ASTM) reconstituted hard water. Toxicity tests also were conducted in ASTM soft, moderately hard, hard, and very hard reconstituted waters (nominal hardness 45-300 mg/L as CaCO3). Three natural surface waters (9.5-11 mg/L DOC) were diluted to obtain a series of DOC concentrations with diluted well water, and an extract of natural organic matter and commercial humic acid was mixed with ASTM hard water to prepare a series of DOC concentrations for toxicity testing. Median effective concentrations (EC50s) for dissolved copper varied >40-fold (9.9 to >396 gg Cu/L) over all 21 treatments in various DOC waters. Within a particular type of DOC water, EC50s increased 5- to 12-fold across DOC concentrations of 0.3 to up to 11 mg C/L. However, EC50s increased by only a factor of 1.4 (21-30 gg Cu/L) in the four ASTM waters with wide range of water hardness (52-300 mg CaCO3/L). Predictions from the biotic ligand model (BLM) for copper explained nearly 90% of the variability in EC50s. Nearly 70% of BLM-normalized EC50s for fatmucket tested in natural waters were below the final acute value used to derive the U.S. Environmental Protection Agency acute water quality criterion for copper, indicating that the criterion might not be protective of fatmucket and perhaps other mussel species.


Assuntos
Cobre/toxicidade , Unionidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Água/química , Animais , Carbono/metabolismo , Feminino , Substâncias Húmicas , Ligantes , Modelos Lineares , Modelos Biológicos , Testes de Toxicidade , Unionidae/crescimento & desenvolvimento , Unionidae/metabolismo
4.
Environ Toxicol Chem ; 27(5): 1141-6, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18419178

RESUMO

The objective of the present study was to evaluate the influence of pH on the toxicity of ammonia to juvenile freshwater mussels. Acute 96-h ammonia toxicity tests were conducted with 10-d-old juvenile mussels (fatmucket, Lampsilis siliquoidea) at five pH levels ranging from 6.5 to 9.0 in flow-through diluter systems at 20 degrees C. Acute 48-h tests with amphipods (Hyalella azteca) and 96-h tests with oligochaetes (Lumbriculus variegatus) were conducted concurrently under the same test conditions to determine the sensitivity of mussels relative to these two commonly tested benthic invertebrate species. During the exposure, pH levels were maintained within 0.1 of a pH unit and ammonia concentrations were relatively constant through time (coefficient of variation for ammonia concentrations ranged from 2 to 30% with a median value of 7.9%). The median effective concentrations (EC50s) of total ammonia nitrogen (N) for mussels were at least two to six times lower than the EC50s for amphipods and oligochaetes, and the EC50s for mussels decreased with increasing pH and ranged from 88 mg N/L at pH 6.6 to 0.96 mg N/L at pH 9.0. The EC50s for mussels were at or below the final acute values used to derive the U.S. Environmental Protection Agency's acute water quality criterion (WQC). However, the quantitative relationship between pH and ammonia toxicity to juvenile mussels was similar to the average relationship for other taxa reported in the WQC. These results indicate that including mussel toxicity data in a revision to the WQC would lower the acute criterion but not change the WQC mathematical representation of the relative effect of pH on ammonia toxicity.


Assuntos
Amônia/toxicidade , Bivalves/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Animais , Feminino , Água Doce
5.
Environ Toxicol Chem ; 37(12): 3077-3085, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30198590

RESUMO

Unionid mussels are ecologically important and are globally imperiled. Toxicants contribute to mussel declines, and toxicity tests using juvenile mussels-a sensitive life stage-are valuable in determining thresholds used to set water quality criteria. In vitro culture methods provide an efficient way to propagate juveniles for toxicity testing, but their relative chemical sensitivity compared with in vivo propagated juveniles is unknown. Current testing guidelines caution against using in vitro cultured juveniles until this sensitivity is described. Our objective was to evaluate the relative sensitivity of juvenile mussels produced from both in vitro and in vivo propagation methods to selected chemicals. We conducted 96-h acute toxicity tests according to ASTM International guidelines with 3 mussel species and 6 toxicants: chloride, nickel, ammonia, and 3 copper-based compounds. Statistically significant differences between in vitro and in vivo juvenile 96-h median effect concentrations were observed in 8 of 17 tests, and in vitro juveniles were more sensitive in 6 of the 8 significant differences. At 96 h, 4 of the 8 statistically different tests for a given chemical were within a factor of 2, which is the intralaboratory variation demonstrated in a recent evaluation of mussel toxicity tests. We found that although differences in chemical sensitivity exist between in vitro and in vivo propagated juvenile mussels, they are within normal toxicity test variation. Therefore, in vitro propagated juvenile mussels may be appropriate for use in ASTM International-based toxicity testing. Environ Toxicol Chem 2018;37:3077-3085. © 2018 SETAC.


Assuntos
Bivalves/efeitos dos fármacos , Água Doce , Testes de Toxicidade Aguda , Poluentes Químicos da Água/toxicidade , Envelhecimento/fisiologia , Animais , Larva/efeitos dos fármacos , Padrões de Referência , Qualidade da Água
6.
Environ Toxicol Chem ; 26(10): 2075-85, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17867877

RESUMO

Water quality data were collected from three drainages supporting the endangered Carolina heelsplitter (Lasmigona decorata) and dwarf wedgemussel (Alasmidonta heterodon) to determine the potential for impaired water quality to limit the recovery of these freshwater mussels in North Carolina, USA. Total recoverable copper, total residual chlorine, and total ammonia nitrogen were measured every two months for approximately a year at sites bracketing wastewater sources and mussel habitat. These data and state monitoring datasets were compared with ecological screening values, including estimates of chemical concentrations likely to be protective of mussels, and federal ambient water quality criteria to assess site risks following a hazard quotient approach. In one drainage, the site-specific ammonia ecological screening value for acute exposures was exceeded in 6% of the samples, and 15% of samples exceeded the chronic ecological screening value; however, ammonia concentrations were generally below levels of concern in other drainages. In all drainages, copper concentrations were higher than ecological screening values most frequently (exceeding the ecological screening values for acute exposures in 65-94% of the samples). Chlorine concentrations exceeding the acute water quality criterion were observed in 14 and 35% of samples in two of three drainages. The ecological screening values were exceeded most frequently in Goose Creek and the Upper Tar River drainages; concentrations rarely exceeded ecological screening values in the Swift Creek drainage except for copper. The site-specific risk assessment approach provides valuable information (including site-specific risk estimates and ecological screening values for protection) that can be applied through regulatory and nonregulatory means to improve water quality for mussels where risks are indicated and pollutant threats persist.


Assuntos
Poluentes Químicos da Água/toxicidade , Animais , Bivalves , Ecologia , Exposição Ambiental , Água Doce , North Carolina , Medição de Risco
7.
Environ Toxicol Chem ; 26(10): 2066-74, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17867876

RESUMO

The state of Oklahoma has designated several areas as freshwater mussel sanctuaries in an attempt to provide freshwater mussel species a degree of protection and to facilitate their reproduction. We evaluated the protection afforded freshwater mussels by the U.S. Environmental Protection Agency (U.S. EPA) hardness-based 1996 ambient copper water quality criteria, the 2007 U.S. EPA water quality criteria based on the biotic ligand model and the 2005 state of Oklahoma copper water quality standards. Both the criterion maximum concentration and criterion continuous concentration were evaluated. Published acute and chronic copper toxicity data that met American Society for Testing and Materials guidance for test acceptability were obtained for exposures conducted with glochidia or juvenile freshwater mussels. We tabulated toxicity data for glochidia and juveniles to calculate 20 species mean acute values for freshwater mussels. Generally, freshwater mussel species mean acute values were similar to those of the more sensitive species included in the U.S. EPA water quality derivation database. When added to the database of genus mean acute values used in deriving 1996 copper water quality criteria, 14 freshwater mussel genus mean acute values included 10 of the lowest 15 genus mean acute values, with three mussel species having the lowest values. Chronic exposure and sublethal effects freshwater mussel data available for four species and acute to chronic ratios were used to evaluate the criterion continuous concentration. On the basis of the freshwater mussel toxicity data used in this assessment, the hardness-based 1996 U.S. EPA water quality criteria, the 2005 Oklahoma water quality standards, and the 2007 U.S. EPA water quality criteria based on the biotic ligand model might need to be revised to afford protection to freshwater mussels.


Assuntos
Bivalves/efeitos dos fármacos , Cobre/toxicidade , Guias como Assunto , Poluentes Químicos da Água/toxicidade , Água , Animais , Cobre/normas , Ecologia , Água Doce , Medição de Risco
8.
Environ Toxicol Chem ; 26(10): 2036-47, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17867873

RESUMO

The objective of the present study was to determine acute toxicity of copper, ammonia, or chlorine to larval (glochidia) and juvenile mussels using the recently published American Society for Testing and Materials (ASTM) Standard guide for conducting laboratory toxicity tests with freshwater mussels. Toxicity tests were conducted with glochidia (24- to 48-h exposures) and juveniles (96-h exposures) of up to 11 mussel species in reconstituted ASTM hard water using copper, ammonia, or chlorine as a toxicant. Copper and ammonia tests also were conducted with five commonly tested species, including cladocerans (Daphnia magna and Ceriodaphnia dubia; 48-h exposures), amphipod (Hyalella azteca; 48-h exposures), rainbow trout (Oncorhynchus mykiss; 96-h exposures), and fathead minnow (Pimephales promelas; 96-h exposures). Median effective concentrations (EC50s) for commonly tested species were >58 microg Cu/L (except 15 microg Cu/L for C. dubia) and >13 mg total ammonia N/L, whereas the EC50s for mussels in most cases were <45 microg Cu/L or <12 mg N/L and were often at or below the final acute values (FAVs) used to derive the U.S. Environmental Protection Agency 1996 acute water quality criterion (WQC) for copper and 1999 acute WQC for ammonia. However, the chlorine EC50s for mussels generally were >40 microg/L and above the FAV in the WQC for chlorine. The results indicate that the early life stages of mussels generally were more sensitive to copper and ammonia than other organisms and that, including mussel toxicity data in a revision to the WQC, would lower the WQC for copper or ammonia. Furthermore, including additional mussel data in 2007 WQC for copper based on biotic ligand model would further lower the WQC.


Assuntos
Amônia/toxicidade , Bivalves/efeitos dos fármacos , Cloro/toxicidade , Cobre/toxicidade , Larva/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Bivalves/crescimento & desenvolvimento , Feminino , Água Doce , Estágios do Ciclo de Vida
9.
Environ Toxicol Chem ; 26(10): 2048-56, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17867874

RESUMO

The objectives of the present study were to develop methods for conducting chronic toxicity tests with juvenile mussels under flow-through conditions and to determine the chronic toxicity of copper and ammonia to juvenile mussels using these methods. In two feeding tests, two-month-old fatmucket (Lampsilis siliquoidea) and rainbow mussel (Villosa iris) were fed various live algae or nonviable algal mixture for 28 d. The algal mixture was the best food resulting in high survival (>or=90%) and growth. Multiple copper and ammonia toxicity tests were conducted for 28 d starting with two-month-old mussels. Six toxicity tests using the algal mixture were successfully completed with a control survival of 88 to 100%. Among copper tests with rainbow mussel, fatmucket, and oyster mussel (Epioblasma capsaeformis), chronic value ([ChV], geometric mean of the no-observed-effect concentration and the lowest-observed-effect concentration) ranged from 8.5 to 9.8 microg Cu/L for survival and from 4.6 to 8.5 microg Cu/L for growth. Among ammonia tests with rainbow mussel, fatmucket, and wavy-rayed lampmussel (L. fasciola), the ChV ranged from 0.37 to 1.2 mg total ammonia N/L for survival and from 0.37 to 0.67 mg N/L for growth. These ChVs were below the U.S. Environmental Protection Agency 1996 chronic water quality criterion (WQC) for copper (15 microg/L; hardness 170 mg/L) and 1999 WQC for total ammonia (1.26 mg N/L; pH 8.2 and 20 degrees C). Results indicate that toxicity tests with two-month-old mussels can be conducted for 28 d with >80% control survival; growth was frequently a more sensitive endpoint compared to survival; and the 1996 chronic WQC for copper and the 1999 chronic WQC for total ammonia might not be adequately protective of the mussel species tested. However, a recently revised 2007 chronic WQC for copper based on the biotic ligand model may be more protective in the water tested.


Assuntos
Amônia/toxicidade , Bivalves/efeitos dos fármacos , Cobre/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bivalves/crescimento & desenvolvimento , Água Doce , Espectrometria de Massas , Sensibilidade e Especificidade
10.
Environ Toxicol Chem ; 26(10): 2029-35, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17867871

RESUMO

The present study evaluated the performance and variability in acute toxicity tests with glochidia and newly transformed juvenile mussels using the standard methods outlined in American Society for Testing and Materials (ASTM). Multiple 48-h toxicity tests with glochidia and 96-h tests with juvenile mussels were conducted within a single laboratory and among five laboratories. All tests met the test acceptability requirements (e.g., >or=90% control survival). Intralaboratory tests were conducted over two consecutive mussel-spawning seasons with mucket (Actinonaias ligamentina) or fatmucket (Lampsilis siliquoidea) using copper, ammonia, or chlorine as a toxicant. For the glochidia of both species, the variability of intralaboratory median effective concentrations (EC50s) for the three toxicants, expressed as the coefficient of variation (CV), ranged from 14 to 27% in 24-h exposures and from 13 to 36% in 48-h exposures. The intralaboratory CV of copper EC50s for juvenile fatmucket was 24% in 48-h exposures and 13% in 96-h exposures. Interlaboratory tests were conducted with fatmucket glochidia and juveniles by five laboratories using copper as a toxicant. The interlaboratory CV of copper EC50s for glochidia was 13% in 24-h exposures and 24% in 48-h exposures, and the interlaboratory CV for juveniles was 22% in 48-h exposures and 42% in 96-h exposures. The high completion success and the overall low variability in test results indicate that the test methods have acceptable precision and can be performed routinely.


Assuntos
Bivalves/efeitos dos fármacos , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Animais , Bivalves/crescimento & desenvolvimento , Água Doce , Laboratórios , Larva/efeitos dos fármacos
11.
Toxics ; 5(3)2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-29051453

RESUMO

The Albemarle-Pamlico Estuarine System (APES) is the second largest estuarine system within the mainland of the United States and is estimated to have lost about half of its submerged aquatic vegetation (SAV) over the past several decades. The issue of herbicide runoff and subsequent toxic effects to SAV is important because of the extensive agricultural production that occurs in the APES region. The aim of this study was to conduct a retrospective analysis of herbicide influx to waters of the APES region during the time period of documented SAV declines and to compare the measured concentrations to SAV toxicity thresholds and changes in agricultural land use. Surface water grab samples were collected at 26 sites in the APES region during May through July 2000. The most consistently measured herbicides were alachlor, atrazine, and metolachlor with geometric mean concentrations ranging from 29 to 2463 ng/L for alachlor, 14 to 7171 ng/L for atrazine, and 17 to 5866 ng/L for metolachlor. Concentrations of alachlor, atrazine, and metolachlor measured in water samples from the APES region in 2000 exceeded several of the established benchmarks, standards, or guidelines for protection of aquatic plants. Although this evaluation was of point-in-time herbicide samples (year 2000) and not analyzed for all possible herbicides used at the time, they were taken during the period of SAV declines, reveal the plausibility of exposure risk to SAV, and suggest that herbicide runoff should be studied along with other variables that influence SAV growth and distribution in future studies.

12.
Environ Toxicol Chem ; 36(3): 786-796, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27699830

RESUMO

Freshwater mussels, one of the most imperiled groups of animals in the world, are generally underrepresented in toxicity databases used for the development of ambient water quality criteria and other environmental guidance values. Acute 96-h toxicity tests were conducted to evaluate the sensitivity of 5 species of juvenile mussels from 2 families and 4 tribes to 10 chemicals (ammonia, metals, major ions, and organic compounds) and to screen 10 additional chemicals (mainly organic compounds) with a commonly tested mussel species, fatmucket (Lampsilis siliquoidea). In the multi-species study, median effect concentrations (EC50s) among the 5 species differed by a factor of ≤2 for chloride, potassium, sulfate, and zinc; a factor of ≤5 for ammonia, chromium, copper, and nickel; and factors of 6 and 12 for metolachlor and alachlor, respectively, indicating that mussels representing different families or tribes had similar sensitivity to most of the tested chemicals, regardless of modes of action. There was a strong linear relationship between EC50s for fatmucket and the other 4 mussel species across the 10 chemicals (r2 = 0.97, slope close to 1.0), indicating that fatmucket was similar to other mussel species; thus, this commonly tested species can be a good surrogate for protecting other mussels in acute exposures. The sensitivity of juvenile fatmucket among different populations or cultured from larvae of wild adults and captive-cultured adults was also similar in acute exposures to copper or chloride, indicating captive-cultured adult mussels can reliably be used to reproduce juveniles for toxicity testing. In compiled databases for all freshwater species, 1 or more mussel species were among the 4 most sensitive species for alachlor, ammonia, chloride, potassium, sulfate, copper, nickel, and zinc; therefore, the development of water quality criteria and other environmental guidance values for these chemicals should reflect the sensitivity of mussels. In contrast, the EC50s of fatmucket tested in the single-species study were in the high percentiles (>75th) of species sensitivity distributions for 6 of 7 organic chemicals, indicating mussels might be relatively insensitive to organic chemicals in acute exposures. Environ Toxicol Chem 2017;36:786-796. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Água Doce/química , Unionidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Larva/efeitos dos fármacos , Dose Letal Mediana , Reprodução/efeitos dos fármacos , Especificidade da Espécie , Testes de Toxicidade Aguda , Poluentes Químicos da Água/química , Qualidade da Água
13.
Environ Toxicol Chem ; 25(9): 2288-98, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16986782

RESUMO

The Cape Fear shiner (Notropis mekistocholas) is a recently described cyprinid species endemic to the Cape Fear River Basin of North Carolina, USA. Only five populations of the fish remain; thus, it is listed as endangered by the U.S. Government. Determining habitat requirements of the Cape Fear shiner, including water quality and physical habitat, is critical to the survival and future restoration of the species. To assess water quality in the best remaining and in the historical habitats, we conducted a 28-d in situ bioassay with captively propagated Cape Fear shiners. Fish were deployed at 10 sites in three rivers, with three cages per site and 20 fish per cage. Water and sediment samples were collected and analyzed for selected metals and organic contaminants. Passive sampling devices also were deployed at each site and analyzed for organic contaminants at test termination. Fish survival, growth (as measured by an increase in total length), and contaminant accumulation were measured on completion of the bioassay. Survival of caged fish averaged 76% (range, 53-100%) and varied significantly among sites and rivers. Caged fish accumulated quantities of cadmium, mercury, polychlorinated biphenyls, and other persistent contaminants over the test duration and grew significantly at only four sites. No apparent relations were observed between exposure to or accumulation of a specific contaminant and reduced growth or survival of fish among all the sites. However, a generalized hazard assessment showed that certain sites exhibited trends in cumulative contaminant presence with reduced fish survival and growth, thereby enabling the identification of the existing riverine habitat most suitable for reintroduction or population augmentation of this endangered fish.


Assuntos
Biodiversidade , Cyprinidae/crescimento & desenvolvimento , Poluentes Químicos da Água/efeitos adversos , Poluentes Químicos da Água/análise , Poluição da Água/efeitos adversos , Poluição da Água/análise , Animais , Conservação dos Recursos Naturais , Cyprinidae/fisiologia , North Carolina , Dinâmica Populacional , Rios
14.
Environ Toxicol Chem ; 35(10): 2383-2391, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27717067

RESUMO

One Health is a collaborative, transdisciplinary effort working locally, nationally, and globally to improve health for people, animals, plants, and the environment. The term is relatively new (from ∼2003), and it is increasingly common to see One Health included by name in interinstitutional research partnerships, conferences, communications, and organizational frameworks, particularly those championed by the human health and veterinary medical communities. Environmental quality is arguably the least developed component within the One Health framework, but can be guided by expertise within the Society of Environmental Toxicology and Chemistry (SETAC). Despite SETAC's long history of tripartite (academic, government, business) interdisciplinary environmental science activities, the term "One Health" is seldom used in SETAC communications (i.e., many of SETAC's activities are guided by One Health, but it is called by other names in SETAC's journals, newsletters, and presentations). Accordingly, the objective of this Focus article is to introduce the One Health concept to the SETAC membership. The article discusses the origins, evolution, and utility of the One Health approach as an organizational framework and provides key examples of ways in which SETAC expertise can benefit the One Health community. The authors assert that One Health needs SETAC and, to be most effective, SETAC needs One Health. Given that One Health to date has focused too little on the environment, on ecosystems, and on contaminants, SETAC's constructive involvement in One Health presents an opportunity to accelerate actions that will ultimately better protect human and ecosystem health. Environ Toxicol Chem 2016;35:2383-2391. © 2016 SETAC.


Assuntos
Ecotoxicologia , Saúde Pública , Animais , Mudança Climática , Doenças Transmissíveis/etiologia , Ecossistema , Humanos
15.
Environ Toxicol Chem ; 35(3): 750-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26369904

RESUMO

The authors developed a toxicity database for unionid mussels to examine the extent of intra- and interlaboratory variability in acute toxicity tests with mussel larvae (glochidia) and juveniles; the extent of differential sensitivity of the 2 life stages; and the variation in sensitivity among commonly tested mussels (Lampsilis siliquoidea, Utterbackia imbecillis, and Villosa iris), commonly tested cladocerans (Daphnia magna and Ceriodaphnia dubia), and fish (Oncorhynchus mykiss, Pimephales promelas, and Lepomis macrochirus). The results of these analyses indicate that intralaboratory variability for median effect concentrations (EC50) averaged about 2-fold for both life stages, whereas interlaboratory variability averaged 3.6-fold for juvenile mussels and 6.3-fold for glochidia. The EC50s for juveniles and glochidia were within a factor of 2 of each other for 50% of paired records across chemicals, with juveniles more sensitive than glochidia by more than 2-fold for 33% of the comparisons made between life stages. There was a high concurrence of sensitivity of commonly tested L. siliquoidea, U. imbecillis, and V. iris to that of other mussels. However, this concurrence decreased as the taxonomic distance of the commonly tested cladocerans and fish to mussels increased. The compiled mussel database and determination of data variability will advance risk assessments by including more robust species sensitivity distributions, interspecies correlation estimates, and availability of taxon-specific empirically derived application factors for risk assessment.


Assuntos
Bivalves/crescimento & desenvolvimento , Bivalves/metabolismo , Testes de Toxicidade Aguda/métodos , Unionidae/crescimento & desenvolvimento , Unionidae/metabolismo , Poluentes Químicos da Água/toxicidade , Envelhecimento , Animais , Cladocera , Daphnia , Bases de Dados Factuais , Peixes , Água Doce , Larva/efeitos dos fármacos , Reprodutibilidade dos Testes , Especificidade da Espécie
16.
J Wildl Dis ; 41(1): 163-70, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15827222

RESUMO

Attempts were made to reproduce avian vacuolar myelinopathy (AVM) in a number of test animals in order to determine the source of the causative agent for birds and to find a suitable animal model for future studies. Submerged vegetation, plankton, invertebrates, forage fish, and sediments were collected from three lakes with ongoing outbreaks of AVM and fed to American coots (Fulica americana), mallard ducks and ducklings (Anas platyrhynchos), quail (Coturnix japonica), and laboratory mice either via gavage or ad libitum. Tissues from AVM-affected coots with brain lesions were fed to ducklings, kestrels (Falco sparverius), and American crows (Corvus brachyrhynchos). Two mallards that ingested one sample of Hydrilla verticillata along with any biotic or abiotic material associated with its external surface developed brain lesions consistent with AVM, although neither of the ducks had clinical signs of disease. Ingestion of numerous other samples of Hydrilla from the AVM affected lakes and a lake with no prior history of AVM, other materials (sediments, algae, fish, invertebrates, and water from affected lakes), or tissues from AVM-affected birds did not produce either clinical signs or brain lesions in any of the other test animals in our studies. These results suggest that waterbirds are most likely exposed to the causative agent of AVM while feeding on aquatic vegetation, but we do not believe the vegetation itself is the agent. We hypothesize that the causative agent of AVM might either be accumulated by aquatic vegetation, such as Hydrilla, or associated with biotic or abiotic material on its external surfaces. In support of that hypothesis, two coots that ingested Hydrilla sampled from a lake with an ongoing AVM outbreak in wild birds developed neurologic signs within 9 days (ataxia, limb weakness, and incoordination), and one of two coots that ingested Hydrilla collected from the same site 13 days later became sick and died within 38 days. None of these three sick coots had definitive brain lesions consistent with AVM by light microscopy, but they had no gross or histologic lesions in other tissues. It is unclear if these birds died of AVM. Perhaps they did not ingest a dose sufficient to produce brain lesions or the lesions were ultrastructural. Alternatively, it is possible that a separate neurotoxic agent is responsible for the morbidity and mortality observed in these coots.


Assuntos
Ração Animal/efeitos adversos , Doenças das Aves/etiologia , Doenças do Sistema Nervoso Central/veterinária , Contaminação de Alimentos , Animais , Animais Selvagens , Doenças das Aves/patologia , Aves , Encéfalo/patologia , Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Feminino , Água Doce , Masculino , Distribuição Aleatória , Vacúolos/patologia
17.
Sci Total Environ ; 311(1-3): 81-9, 2003 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-12826385

RESUMO

Avian vacuolar myelinopathy (AVM) is a disease of unknown etiology, which has been diagnosed in a variety of birds from surface water reservoirs in the southeastern United States. Pathology suggests a natural or anthropogenic compound may be the cause of this disease. With the goal of identifying the toxicant that causes AVM, we qualitatively analyzed sediments and American coot (Fulica americana) tissues from reservoirs that were affected and unaffected by AVM using high-resolution gas chromatographic low-resolution mass spectrometry. Polychlorinated biphenyls (PCBs), octachlorodibenzo-p-dioxin, and biogenic and anthropogenic polycyclic aromatic hydrocarbons (such as retene) were the most abundant compounds in the sediment. Penta- and hexachlorobenzene, oxychlordane, p,p'-DDE, dieldrin, and polychlorinated biphenyls were the most abundant compounds in the avian tissues. None of these compounds were more abundant in the AVM affected sediments and tissues than in the unaffected media. Therefore, it is unlikely that any of these compounds are the cause of this avian disease.


Assuntos
Doenças das Aves/etiologia , Aves , Doenças Desmielinizantes/veterinária , Poluentes Ambientais/efeitos adversos , Hidrocarbonetos/efeitos adversos , Bifenilos Policlorados/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Animais , Doenças das Aves/metabolismo , Doenças Desmielinizantes/etiologia , Poluentes Ambientais/farmacocinética , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos/farmacocinética , Bifenilos Policlorados/farmacocinética , Distribuição Tecidual , Poluentes Químicos da Água/farmacocinética
18.
Environ Toxicol Chem ; 22(11): 2569-75, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14587894

RESUMO

Ammonia toxicity data for freshwater mussels (Unionidae), a significantly imperiled taxa, were used to derive estimates of concentrations that would not likely be harmful in acute and chronic exposures and to assess the protectiveness of current U.S. Environmental Protection Agency (U.S. EPA) water quality criteria to this family of organisms. Thirty acute (24-96-h) median lethal concentrations (LC50s), covering 10 species in eight unionid genera, were used to calculate genus mean acute values (GMAVs) ranging from 2.56 to 8.97 mg/L total ammonia as N at pH 8. Freshwater mussels are at the sensitive end of the range when added to the GMAVs from the database used to derive the U.S. EPA criteria maximum concentration (CMC). We derived two estimates of acute exposure water quality guidance for the protection of freshwater mussels (CMC(FM)) by a recalculation of the CMC after adding freshwater mussel GMAVs to the U.S. EPA data set. The CMC(FM)s of 1.75 and 2.50 mg/L total ammonia as N at pH 8 average 60% less than the U.S. EPA CMC of 5.62 mg/L total ammonia as N at pH 8 for application when salmonids are present. These values average about 75% less than the CMC for application when salmonids are absent. No chronic ammonia exposure data existed for unionids. Thus, we applied a range of estimated acute:chronic ratios to the acute toxicity data set, expanded with the freshwater mussel GMAVs. to estimate continuous ammonia concentrations that may be protective of freshwater mussels. These estimates ranged from 0.3 to 1.0 mg/L total ammonia as N at pH 8, about 20 to 75% less than the U.S. EPA criteria continuous concentration (CCC) of 1.24 mg/L total ammonia as N at pH 8 and 25 degrees C. The current numeric criteria for ammonia may not be protective of mussels, more than half of whose nearly 300 species are in decline in North America. While the CMC(FM) and CCC(FM) are not equivalent to revised U.S. EPA criteria, they are offered as interim guidance for the protection of freshwater mussels.


Assuntos
Amônia/normas , Amônia/toxicidade , Bivalves , Conservação dos Recursos Naturais , Meio Ambiente , Guias como Assunto , Poluentes da Água/normas , Poluentes da Água/toxicidade , Animais , Concentração de Íons de Hidrogênio , Dose Letal Mediana , Medição de Risco , Estados Unidos , United States Environmental Protection Agency
19.
J Wildl Dis ; 38(4): 678-84, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12528432

RESUMO

Epizootic avian vacuolar myelinopathy (AVM) was first recognized as a neurologic disease in bald eagles (Haliaeetus leucocephalus) and American coots (Fulica americana) in Arkansas, USA in 1994 and 1996, respectively, but attempts to identify the etiology of the disease have been unsuccessful to date. Between 1998 and 2001, wing clipped sentinel birds (wild American coots and game farm mallards [Anas platyrhynchos]) were released at Lake Surf, North Carolina, a lake with recurrent outbreaks of AVM, in order to gain a better understanding of the epizootiology of the disease. As early as 5-7 days post-release, sentinel coots and mallards showed neurologic signs of disease and were confirmed with AVM upon histologic examination of their brains. Serial releases of sentinel mallards during the summer, fall, and winter of 2000-01 demonstrated that exposure to the causative agent at a threshold sufficient to manifest disease was seasonal and occurred over about a 2 mo period, during November and December. Our findings that disease onset can be very rapid (5-7 days) and that exposure to the causative agent of AVM is site-specific, seasonal (late fall to early winter), and occurs over a relatively short duration (several months) supports the hypothesis that the disease is caused by a chemical substance, most likely of natural origin.


Assuntos
Doenças das Aves/epidemiologia , Encéfalo/patologia , Bainha de Mielina/patologia , Doenças do Sistema Nervoso/veterinária , Animais , Aves , Encéfalo/ultraestrutura , Patos , Água Doce , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/patologia , North Carolina/epidemiologia , Estações do Ano , Vigilância de Evento Sentinela/veterinária , Vacúolos/patologia
20.
J Wildl Dis ; 39(3): 707-11, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14567235

RESUMO

Avian vacuolar myelinopathy (AVM) is a neurologic disease that has been diagnosed in free-ranging birds in the southeastern United States. Bald eagles (Haliaeetus leuocephalus), American coots (Fulica americana), and mallards (Anas platyrhynchos) have been affected. Previous investigations have not determined the etiology of this disease. In November and December 2002, we attempted to induce AVM in game-farmed mallards through four, 7-day exposure trials. Mallards were housed in six groups of eight, with two of these groups serving as controls. One group was housed with AVM-affected coots; one group was tube fed daily with water from the lake where affected coots were captured; one group was tube fed daily with aquatic vegetation (Hydrilla verticillata) from the same lake; and another group was tube fed daily with sediment from the lake. No ducks exhibited clinical neurologic abnormalities consistent with AVM and no evidence of AVM was present at histopathologic examination of brain tissue. Although limitations in sample size, quantity of individual doses, frequency of dose administration, duration of exposure, and timing of these trials restrict the interpretation of the findings, AVM was not readily transmitted by direct contact, water, hydrilla, or sediment in this investigation.


Assuntos
Doenças das Aves/transmissão , Transmissão de Doença Infecciosa/veterinária , Patos , Bainha de Mielina/patologia , Doenças do Sistema Nervoso/veterinária , Animais , Aves , Encéfalo/patologia , Bainha de Mielina/ultraestrutura , Distribuição Aleatória , Vacúolos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA