Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38804531

RESUMO

OBJECTIVES: The glow discharge plasma (GDP) procedure has proven efficacy in grafting allylamine onto zirconia dental implant surfaces to enhance osseointegration. This study explored the enhancement of zirconia dental implant properties using GDP at different energy settings (25, 50, 75, 100, and 200 W) both in vitro and in vivo. MATERIALS AND METHODS: In vitro analyses included scanning electron microscopy, wettability assessment, energy-dispersive X-ray spectroscopy, and more. In vivo experiments involved implanting zirconia dental implants into rabbit femurs and later evaluation through impact stability test, micro-CT, and histomorphometric measurements. RESULTS: The results demonstrated that 25 and 50 W GDP allylamine grafting positively impacted MG-63 cell proliferation and increased alkaline phosphatase activity. Gene expression analysis revealed upregulation of OCN, OPG, and COL-I. Both 25 and 50 W GDP allylamine grafting significantly improved zirconia's surface properties (p < .05, p < .01, p < .001). However, only 25 W allylamine grafting with optimal energy settings promoted in vivo osseointegration and new bone formation while preventing bone level loss around the dental implant (p < .05, p < .01, p < .001). CONCLUSIONS: This study presents a promising method for enhancing Zr dental implant surface's bioactivity.

2.
Clin Implant Dent Relat Res ; 25(5): 881-891, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37199055

RESUMO

BACKGROUND: Modern technological advancements have led to increase in the development of surgical robots in dentistry, resulting in excellent clinical treatment outcomes. PURPOSE: This study aimed to determine the accuracy of automatic robotic implant site preparation for different implant sizes by correlating planned and posttreatment positions, and to compare the performance of robotic and human freehand drilling. METHOD: Seventy-six drilling sites on partially edentulous models were used, with three different implant sizes (Ø = 3.5 × 10 mm, 4.0 × 10 mm, 5.0 × 10 mm). The robotic procedure was performed using software for calibration and step-by-step drilling processes. After robotic drilling, deviations in the implant position from the planned position were determined. The angulation, depth, and coronal and apical diameters on the sagittal plane of sockets created by human and robotic drilling were measured. RESULTS: The deviation of the robotic system was 3.78° ± 1.97° (angulation), 0.58 ± 0.36 mm (entry point), and 0.99 ± 0.56 mm (apical point). Comparison of implant groups showed the largest deviation from the planned position for 5 mm implants. On the sagittal plane, there were no significant differences between robotic and human surgery except for the 5-mm implant angulation, indicating similar quality between human and robotic drilling. Based on standard implant measurements, robotic drilling exhibited comparable performance to freehand human drilling. CONCLUSIONS: A robotic surgical system can provide the greatest accuracy and reliability regarding the preoperative plan for small implant diameters. In addition, the accuracy of robotic drilling for anterior implant surgery can also be comparable to that of human drilling.


Assuntos
Implantes Dentários , Procedimentos Cirúrgicos Robóticos , Cirurgia Assistida por Computador , Humanos , Implantação Dentária Endóssea/métodos , Reprodutibilidade dos Testes , Cirurgia Assistida por Computador/métodos , Desenho Assistido por Computador , Imageamento Tridimensional/métodos , Tomografia Computadorizada de Feixe Cônico
3.
Polymers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37376267

RESUMO

BACKGROUND: Tricalcium phosphate (TCP, Molecular formula: Ca3(PO4)2) is a hydrophilic bone graft biomaterial extensively used for guided bone regeneration (GBR). However, few studies have investigated 3D-printed polylactic acid (PLA) combined with the osteo-inductive molecule fibronectin (FN) for enhanced osteoblast performance in vitro, and specialized bone defect treatments. AIM: This study evaluated PLA properties and efficacy following glow discharge plasma (GDP) treatment and FN sputtering for fused deposition modeling (FDM) 3D printed PLA alloplastic bone grafts. METHODS: 3D trabecular bone scaffolds (8 × 1 mm) were printed by the 3D printer (XYZ printing, Inc. 3D printer da Vinci Jr. 1.0 3-in-1). After printing PLA scaffolds, additional groups for FN grafting were continually prepared with GDP treatment. Material characterization and biocompatibility evaluations were investigated at 1, 3 and 5 days. RESULTS: SEM images showed the human bone mimicking patterns, and EDS illustrated the increased C and O after fibronectin grafting, XPS and FTIR results together confirmed the presence of FN within PLA material. Degradation increased after 150 days due to FN presence. 3D immunofluorescence at 24 h demonstrated better cell spreading, and MTT assay results showed the highest proliferation with PLA and FN (p < 0.001). Cells cultured on the materials exhibited similar alkaline phosphatase (ALP) production. Relative quantitative polymerase chain reaction (qPCR) at 1 and 5 days revealed a mixed osteoblast gene expression pattern. CONCLUSION: In vitro observations over a period of five days, it was clear that PLA/FN 3D-printed alloplastic bone graft was more favorable for osteogenesis than PLA alone, thereby demonstrating great potential for applications in customized bone regeneration.

4.
J Dent Sci ; 18(3): 1301-1309, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404656

RESUMO

Background/purpose: Artificial Intelligence (AI) can optimize treatment approaches in dental healthcare due to its high level of accuracy and wide range of applications. This study seeks to propose a new deep learning (DL) ensemble model based on deep Convolutional Neural Network (CNN) algorithms to predict tooth position, detect shape, detect remaining interproximal bone level, and detect radiographic bone loss (RBL) using periapical and bitewing radiographs. Materials and methods: 270 patients from January 2015 to December 2020, and all images were deidentified without private information for this study. A total of 8000 periapical radiographs with 27,964 teeth were included for our model. AI algorithms utilizing the YOLOv5 model and VIA labeling platform, including VGG-16 and U-Net architecture, were created as a novel ensemble model. Results of AI analysis were compared with clinicians' assessments. Results: DL-trained ensemble model accuracy was approximately 90% for periapical radiographs. Accuracy for tooth position detection was 88.8%, tooth shape detection 86.3%, periodontal bone level detection 92.61% and radiographic bone loss detection 97.0%. AI models were superior to mean accuracy values from 76% to 78% when detection was performed by dentists. Conclusion: The proposed DL-trained ensemble model provides a critical cornerstone for radiographic detection and a valuable adjunct to periodontal diagnosis. High accuracy and reliability indicate model's strong potential to enhance clinical professional performance and build more efficient dental health services.

5.
Polymers (Basel) ; 15(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36987176

RESUMO

Manufacturing three-dimensional (3D) objects with polymers/bioceramic composite materials has been investigated in recent years. In this study, we manufactured and evaluated solvent-free polycaprolactone (PCL) and beta-tricalcium phosphate (ß-TCP) composite fiber as a scaffold material for 3D printing. To investigate the optimal ratio of feedstock material for 3D printing, the physical and biological characteristics of four different ratios of ß-TCP compounds mixed with PCL were investigated. PCL/ß-TCP ratios of 0 wt.%, 10 wt.%, 20 wt.%, and 30 wt.% were fabricated, with PCL melted at 65 °C and blended with ß-TCP with no solvent added during the fabrication process. Electron microscopy revealed an even distribution of ß-TCP in the PCL fibers, while Fourier transform infrared spectroscopy demonstrated that the biomaterial compounds remained intact after the heating and manufacturing process. In addition, adding 20% ß-TCP into the PCL/ß-TCP mixture significantly increased hardness and Young's Modulus by 10% and 26.5%, respectively, suggesting that PCL-20 has better resistance to deformation under load. Cell viability, alkaline phosphatase (ALPase) activity, osteogenic gene expression, and mineralization were also observed to increase according to the amount of ß-TCP added. Cell viability and ALPase activity were 20% higher with PCL-30, while upregulation for osteoblast-related gene expression was better with PCL-20. In conclusion, PCL-20 and PCL-30 fibers fabricated without solvent exhibited excellent mechanical properties, high biocompatibility, and high osteogenic ability, making them promising materials for 3D printing customized bone scaffolds promptly, sustainably, and cost-effectively.

6.
Front Bioeng Biotechnol ; 11: 1159639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180046

RESUMO

Introduction: To overcome the genuine bioinert properties of zirconia ceramic, functionalization of the surface with the bioactive protein fibronectin was conducted. Methods: Glow discharge plasma (GDP)-Argon was first used to clean the zirconia surface. Then allylamine was treated at three different powers of 50 W, 75 W, and 85 W and immersed into 2 different fibronectin concentrations (5 µg/ml and 10 µg/ml). Results and Discussion: After surface treatment, irregularly folded protein-like substances were attached on the fibronectin coated disks, and a granular pattern was observed for allylamine grafted samples. Infrared spectroscopy detected C-O, N-O, N-H, C-H, and O-H functional groups for fibronectin treated samples. Surface roughness rose and hydrophilicity improved after the surface modification, with MTT assay showing the highest level of cell viability for the A50F10 group. Cell differentiation markers also showed that fibronectin grafted disks with A50F10 and A85F10 were the most active, which in turn encouraged late-stage mineralization activity on 21d. Up-regulation of osteogenic related mRNA expression from 1d to 10d can be observed in RT-qPCR data for ALP, OC, DLX5, SP7, OPG and RANK biomarkers. These physical and biological properties clearly indicate that an allylamine and fibronectin composite grafted surface significantly stimulated the bioactivity of osteoblast-like cells, and can be utilized for future dental implant applications.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34208241

RESUMO

BACKGROUND: In mixed dentition analysis, estimation of the mesiodistal width of unerupted permanent canines and premolars is essential for successful diagnosis and treatment planning. The present study aimed to develop a simple linear equation to predict permanent tooth sizes from mixed dentition analysis for Taiwanese people. METHODS: The sample comprised 200 dental casts, derived from Taiwanese patients (100 males and 100 females; age, 12-35 years). Mesial distal tooth widths were measured in dental casts with a digital caliper. A student's t-test was conducted to detect tooth size correlations with gender-specific differences, as well as intra-arch counterparts. Standard linear regression was conducted to develop a simple equation representing predictions of canine-premolar relationships. RESULTS: All teeth were not significantly different between the left and right sides, regardless of gender and upper or lower arches. In terms of types of teeth, males had larger tooth dimensions in both arches than females. New regression equations for estimating the dimensions of the unerupted canines and premolars in the Taiwanese population were developed. CONCLUSIONS: Using a sample of Taiwanese people, new models derived for females and males separately were developed, which should provide highly accurate predictions for unerupted canines and premolars in the Taiwanese population.


Assuntos
Dentição Mista , Dente não Erupcionado , Adolescente , Adulto , Criança , Dente Canino , Feminino , Humanos , Masculino , Odontometria , Projetos Piloto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA