Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Genet ; 89(4): 473-477, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26456090

RESUMO

Genetic heterogeneity has made the identification of genes related to hearing impairment a challenge. In the absence of a clear phenotypic aetiology, recurrence risk estimates are often based on family segregation and may be imprecise. We profiled by oligonucleotide array-CGH patients presenting non-syndromic hearing loss with presumptive autosomal recessive (n = 50) or autosomal dominant (n = 50) patterns of inheritance. Rare copy number variants (CNVs) were detected in 12 probands; four of the detected CNVs comprised genes previously associated with hearing loss (POU4F3, EYA4, USH2A, and BCAP31) and were considered causative, stressing the contribution of genomic imbalance to non-syndromic deafness. In six cases, segregation of the CNVs in pedigrees excluded them as causative. In one case, segregation could not be investigated, while in another case, a point mutation likely explains the phenotype. These findings show that the presumptive patterns of inheritance were incorrect in at least two cases, thereby impacting genetic counselling. In addition, we report the first duplication reciprocal to the rare ABCD1, BCAP31, and SLC6A8 contiguous deletion syndrome; as with most microduplication syndromes, the associated phenotype is much milder than the respective microdeletion and, in this case, was restricted to hearing impairment.

2.
Clin Genet ; 76(5): 458-64, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19807740

RESUMO

The cause of hearing impairment has not been elucidated in a large proportion of patients. We screened by 1-Mb array-based comparative genomic hybridization (aCGH) 29 individuals with syndromic hearing impairment whose clinical features were not typical of known disorders. Rare chromosomal copy number changes were detected in eight patients, four de novo imbalances and four inherited from a normal parent. The de novo alterations define candidate chromosome segments likely to harbor dosage-sensitive genes related to hearing impairment, namely 1q23.3-q25.2, 2q22q23, 6p25.3 and 11q13.2-q13.4. The rare imbalances also present in normal parents might be casually associated with hearing impairment, but its role as a predisposition gene remains a possibility. Our results show that syndromic deafness is frequently associated with chromosome microimbalances (14-27%), and the use of aCGH for defining disease etiology is recommended.


Assuntos
Instabilidade Cromossômica/genética , Perda Auditiva/genética , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Feminino , Dosagem de Genes , Humanos , Masculino , Síndrome
4.
Int J Hypertens ; 2012: 859219, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056922

RESUMO

Background. It has been widely suggested that analyses considering multilocus effects would be crucial to characterize the relationship between gene variability and essential hypertension (EH). Objective. To test for the presence of multilocus effects between/among seven polymorphisms (six genes) on blood pressure-related traits in African-derived semi-isolated Brazilian populations (quilombos). Methods. Analyses were carried out using a family-based design in a sample of 652 participants (97 families). Seven variants were investigated: ACE (rs1799752), AGT (rs669), ADD2 (rs3755351), NOS3 (rs1799983), GNB3 (rs5441 and rs5443), and GRK4 (rs1801058). Sensitivity analyses were further performed under a case-control design with unrelated participants only. Results. None of the investigated variants were associated individually with both systolic and diastolic BP levels (SBP and DBP, respectively) or EH (as a binary outcome). Multifactor dimensionality reduction-based techniques revealed a marginal association of the combined effect of both GNB3 variants on DBP levels in a family-based design (P = 0.040), whereas a putative NOS3-GRK4 interaction also in relation to DBP levels was observed in the case-control design only (P = 0.004). Conclusion. Our results provide limited support for the hypothesis of multilocus effects between/among the studied variants on blood pressure in quilombos. Further larger studies are needed to validate our findings.

5.
Braz J Med Biol Res ; 42(2): 168-71, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19274344

RESUMO

Mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of nonsyndromic recessive hearing loss in many countries. We report here on a novel point mutation in GJB2, p.L76P (c.227C>T), in compound heterozygosity with a c.35delG mutation, in two Brazilian sibs, one presenting mild and the other profound nonsyndromic neurosensorial hearing impairment. Their father, who carried a wild-type allele and a p.L76P mutation, had normal hearing. The mutation leads to the substitution of leucine (L) by proline (P) at residue 76, an evolutionarily conserved position in Cx26 as well as in other connexins. This mutation is predicted to affect the first extracellular domain (EC1) or the second transmembrane domain (TM2). EC1 is important for connexon-connexon interaction and for the control of channel voltage gating. The segregation of the c.227C>T (p.L76P) mutation together with c.35delG in this family indicates a recessive mode of inheritance. The association between the p.L76P mutation and hearing impairment is further supported by its absence in a normal hearing control group of 100 individuals, 50 European-Brazilians and 50 African-Brazilians.


Assuntos
Conexinas/genética , Surdez/genética , Genes Recessivos/genética , Mutação de Sentido Incorreto/genética , Brasil , Criança , Pré-Escolar , Conexina 26 , Surdez/etnologia , Família , Feminino , Humanos , Masculino
6.
Biochem Biophys Res Commun ; 343(3): 675-6, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16574076

RESUMO

Ballana et al. [E. Ballana, E. Morales, R. Rabionet, B. Montserrat, M. Ventayol, O. Bravo, P. Gasparini, X. Estivill, Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment, Biochem. Biophys. Res. Commun. 341 (2006) 950-957] detected a T1291C mutation segregating in a Cuban pedigree with hearing impairment. They interpreted it as probably pathogenic, based on family history, RNA conformation prediction and its absence in a control group of 95 Spanish subjects. We screened a sample of 203 deaf subjects and 300 hearing controls (110 "European-Brazilians" and 190 "African-Brazilians") for the mitochondrial mutations A1555G and T1291C. Five deaf subjects had the T1291C substitution, three isolated cases and two familial cases. In the latter, deafness was paternally inherited or segregated with the A1555G mutation. This doesn't support the hypothesis of T1291C mutation being pathogenic. Two "African-Brazilian" controls also had the T1291C substitution. Six of the seven T1291C-carriers (five deaf and two controls) had mitochondrial DNA of African origin, belonging to macrohaplogroup L1/L2. Therefore, these data point to T1291C substitution as most probably an African non-pathogenic polymorphism.


Assuntos
Surdez/genética , Polimorfismo de Nucleotídeo Único , RNA Ribossômico/genética , Sequência de Bases , População Negra/genética , Brasil/etnologia , DNA Mitocondrial/química , Surdez/etnologia , Genes Mitocondriais , Genes de RNAr , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Penetrância , Mutação Puntual , RNA Ribossômico/química , Alinhamento de Sequência , População Branca/genética
7.
Braz. j. med. biol. res ; 42(2): 168-171, Feb. 2009. ilus
Artigo em Inglês | LILACS | ID: lil-506883

RESUMO

Mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of nonsyndromic recessive hearing loss in many countries. We report here on a novel point mutation in GJB2, p.L76P (c.227C>T), in compound heterozygosity with a c.35delG mutation, in two Brazilian sibs, one presenting mild and the other profound nonsyndromic neurosensorial hearing impairment. Their father, who carried a wild-type allele and a p.L76P mutation, had normal hearing. The mutation leads to the substitution of leucine (L) by proline (P) at residue 76, an evolutionarily conserved position in Cx26 as well as in other connexins. This mutation is predicted to affect the first extracellular domain (EC1) or the second transmembrane domain (TM2). EC1 is important for connexon-connexon interaction and for the control of channel voltage gating. The segregation of the c.227C>T (p.L76P) mutation together with c.35delG in this family indicates a recessive mode of inheritance. The association between the p.L76P mutation and hearing impairment is further supported by its absence in a normal hearing control group of 100 individuals, 50 European-Brazilians and 50 African-Brazilians.


Assuntos
Criança , Pré-Escolar , Feminino , Humanos , Masculino , Conexinas/genética , Surdez/genética , Genes Recessivos/genética , Mutação de Sentido Incorreto/genética , Brasil , Surdez/etnologia , Família
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA