Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 903: 166254, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574055

RESUMO

Temporary rivers are widespread in the Mediterranean region and impose a challenge for the implementation of the Water Framework Directive (WFD) and other environmental regulations. Surprisingly, an overarching analysis of their ecological status and the stressors affecting them is yet missing. We compiled data on the ecological status of 1504 temporary rivers in seven European Mediterranean region countries and related their ecological status (1) to publicly available data on pressures from the European WISE-WFD dataset, and (2) to seven more specific stressors modelled on a sub-catchment scale. More than 50 % of the temporary water bodies in the Mediterranean countries reached good or even high ecological status. In general, status classes derived from phytobenthos and macrophyte assessment were higher than those derived from the assessment of benthic invertebrates or fish. Of the more generally defined pressures reported to the WISE-WFD database, the most relevant for temporary rivers were 'diffuse agricultural' and 'point urban waste water'. Of the modelled more specific stressors, agricultural land use best explained overall ecological status, followed by total nitrogen load, and urban land use, while toxic substances, total phosphorus load and hydrological stressors were less relevant. However, stressors differed in relevance, with total nitrogen being most important for macrophytes, and agricultural land use for phytobenthos, benthic invertebrates and fish. For macrophytes, ecological quality increased with stressor intensity. The results underline the overarching effect of land use intensity for the ecological status of temporary water bodies. However, assessment results do not sufficiently reflect hydrological stress, most likely as the biological indicators used to evaluate these systems were designed for perennial water bodies and thus mainly target land use and nutrient impacts. We conclude that biomonitoring systems need to be updated or newly developed to better account for the specific situation of temporary water bodies.

2.
Environ Res Lett ; 16(10): 1-13, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35874907

RESUMO

Surface water browning, the result of increasing concentrations of dissolved organic matter (DOM), has been widespread in northern ecosystems in recent decades. Here, we assess a database of 426 undisturbed headwater lakes and streams in Europe and North America for evidence of trends in DOM between 1990 and 2016. We describe contrasting changes in DOM trends in Europe (decelerating) and North America (accelerating), which are consistent with organic matter solubility responses to declines in sulfate deposition. While earlier trends (1990-2004) were almost entirely related to changes in atmospheric chemistry, climatic and chemical drivers were equally important in explaining recent DOM trends (2002-2016). We estimate that riverine DOM export from northern ecosystems increased by 27% during the study period. Increased summer precipitation strengthened upward dissolved organic carbon trends while warming apparently damped browning. Our results suggest strong but changing influences of air quality and climate on the terrestrial carbon cycle, and on the magnitude of carbon export from land to water.

3.
Ambio ; 49(11): 1759-1770, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32535875

RESUMO

Reduced emissions of nitrogen (N) in Europe have resulted in decreasing atmospheric deposition since 1990. Long-term data (1988-2017) from four small Norwegian catchments located along gradients in N deposition, rainfall, and organic carbon (C) show different responses to 25-30% reductions in N deposition during the same period. At three sites the decreased N deposition caused reduced leaching of nitrate to surface water, whereas the westernmost site showed no decrease, probably due to thin soils with low C:N ratio, poor vegetation cover and high precipitation. The loss of total N to streamwater constituted 30-50% of the N deposition. Losses via denitrification are unknown but assumed to be low, as a major fraction of the catchments are well-drained. Hence, the study sites seem to continue to accumulate N, presumably mostly in soil organic matter. Although atmospheric N deposition has declined, ambient loads might still exceed long-term sustainable levels in these vulnerable ecosystems.


Assuntos
Ecossistema , Nitrogênio/análise , Monitoramento Ambiental , Europa (Continente) , Noruega , Solo
4.
Sci Total Environ ; 697: 134043, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32380597

RESUMO

European countries have defined >1000 national river types and >400 national lake types to implement the EU Water Framework Directive (WFD). In addition, common river and lake types have been defined within regions of Europe for intercalibrating the national classification systems for ecological status of water bodies. However, only a low proportion of national types correspond to these common intercalibration types. This causes uncertainty concerning whether the classification of ecological status is consistent across countries. Therefore, through an extensive dialogue with and data provision from all EU countries, we have developed a generic typology for European rivers and lakes. This new broad typology reflects the natural variability in the most commonly used environmental type descriptors: altitude, size and geology, as well as mean depth for lakes. These broad types capture 60-70% of all national WFD types including almost 80% of all European river and lake water bodies in almost all EU countries and can also be linked to all the common intercalibration types. The typology provides a new framework for large-scale assessments across country borders, as demonstrated with an assessment of ecological status and pressures based on European data from the 2nd set of river basin management plans. The typology can also be used for a variety of other large-scale assessments, such as reviewing and linking the water body types to habitat types under the Habitats Directive and the European Nature Information System (EUNIS), as well as comparing type-specific limit values for nutrients and other supporting quality elements across countries. Thus, the broad typology can build the basis for all scientific outputs of managerial relevance related to water body types.

5.
Ambio ; 37(1): 38-47, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18341116

RESUMO

Projected increases in winter temperature due to future climate change may cause decreased snow accumulation at lower and intermediate altitudes in northern temperate regions. The resulting changes in soil temperature and water regime may affect the leaching of total organic carbon (TOC) and total organic nitrogen (TON). We manipulated the snow cover of small headwater catchments in a montane heathland area of southern Norway to quantify its effect on concentrations and fluxes of TOC and TON in runoff. Manipulations included snow removal, to promote soil frost, and insulation, to prevent soil frost. Snow removal resulted in increased TOC and TON concentrations, but decreased fluxes. Insulation caused a slight decrease in concentrations and fluxes of TOC. Our experiments show that a change in snow depth, and thus soil temperature, is not likely to have serious effects on TOC and TON leaching in the montane heathland area studied.


Assuntos
Carbono/análise , Clima , Nitrogênio/análise , Neve/química , Poluentes Químicos da Água/análise , Ecossistema , Água Doce/química , Noruega , Estações do Ano , Solo , Temperatura
6.
Ambio ; 37(1): 29-37, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18341115

RESUMO

We have manipulated the winter-time soil temperature regime of small headwater catchments in a montane heathland area of southern Norway to study the possible effects on concentrations and fluxes of inorganic nitrogen in runoff. The experiments included extra insulation of soils in two catchments to prevent subzero temperatures during winter, and removal of snow in two other catchments to promote soil frost. Increased soil temperatures during winter increased the springtime concentrations and fluxes of ammonium (NH4) and nitrate (NO3) in runoff. By contrast, snow removal with development of significant soil frost showed no systematic effects on mean concentrations or fluxes of inorganic N. The results from our experiments suggest that warmer soils during winter caused by exceptionally mild winters, or alternatively a heavy snowpack, imply a greater risk for inorganic N leaching in this region than a possible increase of soil frost events because of reduced snow cover.


Assuntos
Nitratos/análise , Óxido Nítrico/análise , Compostos de Amônio Quaternário/análise , Neve/química , Solo , Poluentes Químicos da Água/análise , Noruega , Estações do Ano , Temperatura
7.
Ambio ; 37(1): 48-55, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18341117

RESUMO

Projected changes in climate in Southern Norway include increases in summer and autumn precipitation. This may affect leaching of dissolved organic matter (DOM) from soils. Effects of experimentally added extra precipitation (10 mm week) during the growing season of 3 years (2004-2006) to small headwater catchments at Storgama (59 degrees 0'N, 550-600 m a.s.l.) on leaching of total organic carbon (TOC) and total organic nitrogen (TON) were assessed. Extra precipitation did not have a significant effect on average TOC and TON concentrations in runoff. Thus, fluxes of TOC and TON increased nearly proportionally with water fluxes. This suggests that a store of adsorbed and potentially mobile TOC and TON in catchment soils buffers the concentration of DOM in runoff. The size and dynamics of the pool of TOC and TON depends on the balance between production and leaching rates. Infrequent short droughts had only small effects on TOC and TON fluxes in runoff from the reference catchments.


Assuntos
Carbono/análise , Clima , Nitrogênio/análise , Chuva , Estações do Ano , Água Doce/química , Noruega , Solo , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 640-641: 387-399, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860010

RESUMO

Current climate warming is expected to continue in coming decades, whereas high N deposition may stabilize, in contrast to the clear decrease in S deposition. These pressures have distinctive regional patterns and their resulting impact on soil conditions is modified by local site characteristics. We have applied the VSD+ soil dynamic model to study impacts of deposition and climate change on soil properties, using MetHyd and GrowUp as pre-processors to provide input to VSD+. The single-layer soil model VSD+ accounts for processes of organic C and N turnover, as well as charge and mass balances of elements, cation exchange and base cation weathering. We calibrated VSD+ at 26 ecosystem study sites throughout Europe using observed conditions, and simulated key soil properties: soil solution pH (pH), soil base saturation (BS) and soil organic carbon and nitrogen ratio (C:N) under projected deposition of N and S, and climate warming until 2100. The sites are forested, located in the Mediterranean, forested alpine, Atlantic, continental and boreal regions. They represent the long-term ecological research (LTER) Europe network, including sites of the ICP Forests and ICP Integrated Monitoring (IM) programmes under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP), providing high quality long-term data on ecosystem response. Simulated future soil conditions improved under projected decrease in deposition and current climate conditions: higher pH, BS and C:N at 21, 16 and 12 of the sites, respectively. When climate change was included in the scenario analysis, the variability of the results increased. Climate warming resulted in higher simulated pH in most cases, and higher BS and C:N in roughly half of the cases. Especially the increase in C:N was more marked with climate warming. The study illustrates the value of LTER sites for applying models to predict soil responses to multiple environmental changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA