Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Small ; 20(38): e2403321, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38837576

RESUMO

Transition metal derivatives exhibit high theoretical capacity, making them promising anode materials for sodium-ion batteries. Sulfides, known for their superior electrical conductivity compared to oxides, enhance charge transfer, leading to improved electrochemical performance. Here, a hierarchical WS2 micro-flower is synthesized by thermal sulfurization of WO3. Comprising interconnected thin nanosheets, this structure offers increased surface area, facilitating extensive internal surfaces for electrochemical redox reactions. The WS2 micro-flower demonstrates a specific capacity of ≈334 mAh g-1 at 15 mA g-1, nearly three times higher than its oxide counterpart. Further, it shows very stable performance as a high-temperature (65 °C) anode with ≈180 mAh g-1 reversible capacity at 100 mA g-1 current rate. Post-cycling analysis confirms unchanged morphology, highlighting the structural stability and robustness of WS2. DFT calculations show that the electronic bandgap in both WS2 and WO3 increases when going from the bulk to monolayers. Na adsorption calculations show that Na atoms bind strongly in WO3 with a higher energy diffusion barrier when compared to WS2, corroborating the experimental findings. This study presents a significant insight into electrode material selection for sodium-ion storage applications.

2.
ACS Omega ; 9(37): 39195-39201, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39310209

RESUMO

The potential of tetra-penta-deca-hexagonal graphene (TPDH-gr), a recently proposed 2D carbon allotrope as an anodic material in lithium ion batteries (LIBs), was investigated through density functional theory calculations. The results indicate that Li-atom adsorption is moderate (around 0.70 eV), allowing for easy desorption. Moreover, energy barriers (0.08-0.20 eV), diffusion coefficient (>6 × 10-6 cm2/s), and open circuit voltage (0.29 V) calculations show rapid Li atom diffusion on the TPDH-gr surface, stable intercalation of lithium atoms, and good performance during the charge and discharge cycles of the LIB. These findings, combined with the intrinsic metallic nature of TPDH-gr, indicate that this new 2D carbon allotrope is a promising candidate for use as an anodic LIB material.

3.
Adv Mater ; 33(44): e2101589, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34561916

RESUMO

Hexagonal boron nitride (h-BN) has emerged as a strong candidate for two-dimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of state-of-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years. It further elaborates a wide variety of processing routes developed for doping, substitution, functionalization, and combination with other materials to form heterostructures. Based on the extraordinary properties and thermal-mechanical-chemical stability of 2D h-BN, various potential applications of these structures are described.

4.
Rev Inst Med Trop Sao Paulo ; 50(1): 21-4, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18327483

RESUMO

Plasmodium falciparum resistant strain development has encouraged the search for new antimalarial drugs. Febrifugine is a natural substance with high activity against P. falciparum presenting strong emetic property and liver toxicity, which prevent it from being used as a clinical drug. The search for analogues that could have a better clinical performance is a current topic. We aim to investigate the theoretical electronic structure by means of febrifugine derivative family semi-empirical molecular orbital calculations, seeking the electronic indexes that could help the design of new efficient derivatives. The theoretical results show there is a clustering in well-defined ranges of several electronic indexes of the most selective molecules. The model proposed for achieving high selectivity was tested with success.


Assuntos
Antimaláricos/síntese química , Piperidinas/síntese química , Quinazolinas/síntese química , Animais , Antimaláricos/química , Modelos Moleculares , Piperidinas/química , Teoria Quântica , Quinazolinas/química
5.
Rev. Inst. Med. Trop. Säo Paulo ; Rev. Inst. Med. Trop. Säo Paulo;50(1): 21-24, Jan.-Feb. 2008. ilus, tab
Artigo em Inglês | LILACS | ID: lil-476758

RESUMO

Plasmodium falciparum resistant strain development has encouraged the search for new antimalarial drugs. Febrifugine is a natural substance with high activity against P. falciparum presenting strong emetic property and liver toxicity, which prevent it from being used as a clinical drug. The search for analogues that could have a better clinical performance is a current topic. We aim to investigate the theoretical electronic structure by means of febrifugine derivative family semi-empirical molecular orbital calculations, seeking the electronic indexes that could help the design of new efficient derivatives. The theoretical results show there is a clustering in well-defined ranges of several electronic indexes of the most selective molecules. The model proposed for achieving high selectivity was tested with success.


O desenvolvimento de linhagens resistentes de Plasmodium falciparum tem encorajado a busca por novas drogas antimalariais. A febrifugina é uma substância natural com alta atividade contra o P. falciparum que apresenta propriedade emética e toxicidade para o fígado tal que não permitem o seu uso clínico. A busca por análogos que possam ter uma performance clínica melhor é um tema de pesquisa atual. Nosso objetivo é investigar a estrutura eletrônica teórica de uma família de derivados da febrifugina empregando cálculos semi-empíricos de orbitais moleculares, procurando por índices eletrônicos que possam ajudar a modelar novos derivados mais eficientes. Os resultados teóricos mostram que para as moléculas mais seletivas existe um agrupamento dos valores de determinados índices em intervalos bem definidos. O modelo proposto para se obter alta seletividade foi testado com sucesso.


Assuntos
Animais , Antimaláricos/síntese química , Piperidinas/síntese química , Quinazolinas/síntese química , Antimaláricos/química , Modelos Moleculares , Piperidinas/química , Teoria Quântica , Quinazolinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA