Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Physiol Genomics ; 52(8): 358-368, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32716698

RESUMO

MicroRNAs (miRNAs) are powerful regulators of protein expression. Many play important roles in cardiac development and disease. While several miRNAs and targets have been well characterized, the abundance of miRNAs and the numerous potential targets for each suggest that the vast majority of these interactions have yet to be described. The goal of this study was to characterize miRNA expression in the mouse heart after coronary artery ligation (LIG) and identify novel mRNA targets altered during the initial response to ischemic stress. We performed small RNA sequencing (RNA-Seq) of ischemic heart tissue 1 day and 3 days after ligation and identified 182 differentially expressed miRNAs. We then selected relevant mRNA targets from all potential targets by correlating miRNA and mRNA expression from a corresponding RNA-Seq data set. From this analysis we chose to focus, as proof of principle, on two miRNAs from the miR-125 family, miR-125a and miR-351, and two of their potential mRNA targets, Xin actin-binding repeat-containing protein 1 (XIRP1) and factor inhibiting hypoxia-inducible factor (FIH). We found miR-125a to be less abundant and XIRP1 more abundant after ligation. In contrast, the related murine miRNA miR-351 was substantially upregulated in response to ischemic injury, and FIH expression correspondingly decreased. Luciferase reporter assays confirmed direct interactions between these miRNAs and targets. In summary, we utilized a correlative analysis strategy combining miRNA and mRNA expression data to identify functional miRNA-mRNA relationships in the heart after ligation. These findings provide insight into the response to ischemic injury and suggest future therapeutic targets.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , MicroRNAs/genética , Oxigenases de Função Mista/genética , Infarto do Miocárdio/genética , Regulação para Cima/genética , Animais , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Oxigenases de Função Mista/metabolismo , Infarto do Miocárdio/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética
2.
Am J Physiol Heart Circ Physiol ; 316(3): H554-H565, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30575439

RESUMO

The principal regulator of cellular response to low oxygen is hypoxia-inducible factor (HIF)-1, which is stabilized in several forms of heart failure. Our laboratory developed a mouse strain in which a stable form of HIF-1 can be inducibly expressed in cardiomyocytes. Strikingly, these mice show a rapid decrease in cardiac contractility and a rapid loss of SERCA2 protein, which is also seen in heart failure. Interestingly, while the SERCA2 transcript decreased, it did not fully account for the observed decrease in protein. We therefore investigated whether HIF-1-regulated microRNA could impair SERCA translation. Multiple screening analyses identified the microRNA miR-29c to be substantially upregulated upon HIF-1 induction and to have complementarity to SERCA, and therefore be a potential regulator of SERCA2 expression in hypoxia. Subsequent evaluation confirmed that miR-29c reduced SERCA2 expression and Ca2+ reuptake. Additionally, administration of an antagonist sequence (antimir) improved cardiac contractility and SERCA2 expression in HIF transgenic mice. To extend the significance of these findings, we examined miR-29c expression in physiological hypoxia. Surprisingly, miR-29c decreased in these settings. We also treated mice with antimir before infarction to see if further suppression of miR-29c could improve cardiac function. While no improvement in contractility or SERCA2 was observed, reduction of heart size after infarction indicated that the antimir could modulate cardiac physiology. These results demonstrate that while a HIF-1-regulated microRNA, miR-29c, can reduce SERCA2 expression and contractility, additional factors in the ischemic milieu may limit these effects. Efforts to develop miRNA-based therapies will need to explore and account for these additional countervailing effects. NEW & NOTEWORTHY Our study demonstrated hypoxia-inducible factor-1-dependent upregulation of miR-29c, which, in turn, inhibited SERCA2 expression and reduced cardiac contractility in a transgenic overexpression system. Interestingly, these results were not recapitulated in a murine myocardial infarction model. These results underscore the complexity of the pathological environment and highlight the need for therapeutic target validation in physiologically relevant models.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Animais , Cálcio/metabolismo , Hipóxia Celular , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miócitos Cardíacos/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
3.
Physiol Genomics ; 50(7): 479-494, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29652636

RESUMO

Alternative splicing of RNA is an underexplored area of transcriptional response. We expect that early changes in alternatively spliced genes may be important for responses to cardiac injury. Hypoxia inducible factor 1 (HIF1) is a key transcription factor that rapidly responds to loss of oxygen through alteration of metabolism and angiogenesis. The goal of this study was to investigate the transcriptional response after myocardial infarction (MI) and to identify novel, hypoxia-driven changes, including alternative splicing. After ligation of the left anterior descending artery in mice, we observed an abrupt loss of cardiac contractility and upregulation of hypoxic signaling. We then performed RNA sequencing on ischemic heart tissue 1 and 3 days after infarct to assess early transcriptional changes and identified 89 transcripts with altered splicing. Of particular interest was the switch in Pkm isoform expression (pyruvate kinase, muscle). The usually predominant Pkm1 isoform was less abundant in ischemic hearts, while Pkm2 and associated splicing factors (hnRNPA1, hnRNPA2B1, Ptbp1) rapidly increased. Despite increased Pkm2 expression, total pyruvate kinase activity remained reduced in ischemic myocardial tissue. We also demonstrated HIF1 binding to PKM by chromatin immunoprecipitation, indicating a direct role for HIF1 in mediating this isoform switch. Our study provides a new, detailed characterization of the early transcriptome after MI. From this analysis, we identified an HIF1-mediated alternative splicing event in the PKM gene. Pkm1 and Pkm2 play distinct roles in glycolytic metabolism and the upregulation of Pkm2 is likely to have important consequences for ATP synthesis in infarcted cardiac muscle.


Assuntos
Perfilação da Expressão Gênica , Fator 1 Induzível por Hipóxia/genética , Infarto do Miocárdio/genética , Piruvato Quinase/genética , Processamento Alternativo , Animais , Glicólise/genética , Humanos , Hipóxia , Fator 1 Induzível por Hipóxia/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Piruvato Quinase/metabolismo
4.
Sci Rep ; 11(1): 13116, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162925

RESUMO

Ischemic heart disease is a leading cause of heart failure and hypoxia inducible factor 1 (HIF1) is a key transcription factor in the response to hypoxic injury. Our lab has developed a mouse model in which a mutated, oxygen-stable form of HIF1α (HIF-PPN) can be inducibly expressed in cardiomyocytes. We observed rapid cardiac dilation and loss of contractility in these mice due to lower expression of excitation-contraction coupling genes and reduced calcium flux. As alternative splicing plays an underappreciated role in transcriptional regulation, we used RNA sequencing to search for splicing changes in calcium-handling genes of HIF-PPN hearts and compared them to previous sequencing data from a model of myocardial infarction (MI) to select for transcripts that are modified in a pathological setting. We found overlap between genes differentially expressed in HIF-PPN and post-MI mice (54/131 genes upregulated in HIF-PPN hearts at 1 day and/or 3 days post-MI, and 45/78 downregulated), as well as changes in alternative splicing. Interestingly, calcium/calmodulin dependent protein kinase II, gamma (CAMK2G) was alternatively spliced in both settings, with variant 1 (v1) substantially decreased compared to variants 2 (v2) and 3 (v3). These findings were also replicated in vitro when cells were transfected with HIF-PPN or exposed to hypoxia. Further analysis of CAMK2γ protein abundance revealed only v1 was detectable and substantially decreased up to 7 days post-MI. Rbfox1, a splicing factor of CAMK2G, was also decreased in HIF-PPN and post-MI hearts. Subcellular fractionation showed CAMK2γ v1 was found in the nuclear and cytoplasmic fractions, and abundance decreased in both fractions post-MI. Chromatin immunoprecipitation analysis of HIF1 in post-MI hearts also demonstrated direct HIF1 binding to CAMK2G. CaMK2 is a key transducer of calcium signals in both physiological and pathological settings. The predominantly expressed isoform in the heart, CaMK2δ, has been extensively studied in cardiac injury, but the specific role of CaMK2γ is not well defined. Our data suggest that loss of CaMK2γ after MI is HIF1-dependent and may play an important role in the heart's calcium signaling and transcriptional response to hypoxia.


Assuntos
Processamento Alternativo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Isquemia Miocárdica/metabolismo , Animais , Western Blotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
5.
Appl Environ Microbiol ; 73(11): 3695-704, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17449699

RESUMO

Vibrio cholerae is an autochthonous member of diverse aquatic ecosystems around the globe. Collectively, the genomes of environmental V. cholerae strains comprise a large repository of encoded functions which can be acquired by individual V. cholerae lineages through uptake and recombination. To characterize the genomic diversity of environmental V. cholerae, we used comparative genome hybridization to study 41 environmental strains isolated from diverse habitats along the central California coast, a region free of endemic cholera. These data were used to classify genes of the epidemic V. cholerae O1 sequenced strain N16961 as conserved, variably present, or absent from the isolates. For the most part, absent genes were restricted to large mobile elements and have known functions in pathogenesis. Conversely, genes present in some, but not all, California isolates were in smaller contiguous clusters and were less likely to be near genes with functions in DNA mobility. Two such clusters of variable genes encoding different selectable metabolic phenotypes (mannose and diglucosamine utilization) were transformed into the genomes of environmental isolates by chitin-dependent competence, indicating that this mechanism of general genetic exchange is conserved among V. cholerae. The transformed DNA had an average size of 22.7 kbp, demonstrating that natural competence can mediate the movement of large chromosome fragments. Thus, whether variable genes arise through the acquisition of new sequences by horizontal gene transfer or by the loss of preexisting DNA though deletion, natural transformation provides a mechanism by which V. cholerae clones can gain access to the V. cholerae pan-genome.


Assuntos
DNA Bacteriano/genética , Variação Genética , Genoma Bacteriano/genética , Água do Mar/microbiologia , Transformação Bacteriana , Vibrio cholerae/genética , Vibrio cholerae/isolamento & purificação , California , DNA Bacteriano/isolamento & purificação , Transferência Genética Horizontal , Sequências Repetitivas Dispersas , Família Multigênica/genética , Vibrio cholerae O1/genética
6.
Hum Mol Genet ; 13(6): 609-16, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-14734628

RESUMO

Studies of gene expression abnormalities in psychiatric or neurological disorders often involve the use of postmortem brain tissue. Compared with single-cell organisms or clonal cell lines, the biological environment and medical history of human subjects cannot be controlled, and are often difficult to document fully. The chance of finding significant and replicable changes depends on the nature and magnitude of the observed variations among the studied subjects. During an analysis of gene expression changes in mood disorders, we observed a remarkable degree of natural variation among 120 samples, which represented three brain regions in 40 subjects. Most of such diversity can be accounted for by two distinct expression patterns, which in turn are strongly correlated with tissue pH. Individuals who suffered prolonged agonal states, such as with respiratory arrest, multi-organ failure or coma, tended to have lower pH in the brain; whereas those who experienced brief deaths, associated with accidents, cardiac events or asphyxia, generally had normal pH. The lower pH samples exhibited a systematic decrease in expression of genes involved in energy metabolism and proteolytic activities, and a consistent increase of genes encoding stress-response proteins and transcription factors. This functional specificity of changed genes suggests that the difference is not merely due to random RNA degradation in low pH samples; rather it reflects a broad and actively coordinated biological response in living cells. These findings shed light on critical molecular mechanisms that are engaged during different forms of terminal stress, and may suggest clinical targets of protection or restoration.


Assuntos
Encéfalo/metabolismo , Expressão Gênica , Transtornos do Humor/metabolismo , Adulto , Idoso , Cisteína Endopeptidases/metabolismo , Metabolismo Energético/genética , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Pessoa de Meia-Idade , Complexos Multienzimáticos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Complexo de Endopeptidases do Proteassoma , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA