RESUMO
BACKGROUND AND OBJECTIVE: Although named because of its sucrose hydrolytic activity, this mucosal enzyme plays a leading role in starch digestion because of its maltase and glucoamylase activities. Sucrase-deficient mutant shrews, Suncus murinus, were used as a model to investigate starch digestion in patients with congenital sucrase-isomaltase deficiency.Starch digestion is much more complex than sucrose digestion. Six enzyme activities, 2 α-amylases (Amy), and 4 mucosal α-glucosidases (maltases), including maltase-glucoamylase (Mgam) and sucrase-isomaltase (Si) subunit activities, are needed to digest starch to absorbable free glucose. Amy breaks down insoluble starch to soluble dextrins; mucosal Mgam and Si can either directly digest starch to glucose or convert the post-α-amylolytic dextrins to glucose. Starch digestion is reduced because of sucrase deficiency and oral glucoamylase enzyme supplement can correct the starch maldigestion. The aim of the present study was to measure glucogenesis in suc/suc shrews after feeding of starch and improvement of glucogenesis by oral glucoamylase supplements. METHODS: Sucrase mutant (suc/suc) and heterozygous (+/suc) shrews were fed with C-enriched starch diets. Glucogenesis derived from starch was measured as blood C-glucose enrichment and oral recombinant C-terminal Mgam glucoamylase (M20) was supplemented to improve starch digestion. RESULTS: After feedings, suc/suc and +/suc shrews had different starch digestions as shown by blood glucose enrichment and the suc/suc had lower total glucose concentrations. Oral supplements of glucoamylase increased suc/suc total blood glucose and quantitative starch digestion to glucose. CONCLUSIONS: Sucrase deficiency, in this model of congenital sucrase-isomaltase deficiency, reduces blood glucose response to starch feeding. Supplementing the diet with oral recombinant glucoamylase significantly improved starch digestion in the sucrase-deficient shrew.
Assuntos
Erros Inatos do Metabolismo dos Carboidratos/tratamento farmacológico , Suplementos Nutricionais , Digestão/fisiologia , Fármacos Gastrointestinais/uso terapêutico , Glucana 1,4-alfa-Glucosidase/uso terapêutico , Amido/metabolismo , Complexo Sacarase-Isomaltase/deficiência , Sacarase/deficiência , Administração Oral , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Glicemia/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Masculino , Distribuição Aleatória , Musaranhos , Complexo Sacarase-Isomaltase/metabolismo , Resultado do TratamentoRESUMO
OBJECTIVES: Six enzyme activities are needed to digest starch to absorbable free glucose; 2 luminal α-amylases (AMY) and 4 mucosal maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) subunit activities are involved in the digestion. The AMY activities break down starch to soluble oligomeric dextrins; mucosal MGAM and SI can either directly digest starch to glucose or convert the post-α-amylolytic dextrins to glucose. We hypothesized that MGAM, with higher maltase than SI, drives digestion on ad limitum intakes and SI, with lower activity but more abundant amount, constrains ad libitum starch digestion. METHODS: Mgam null and wild-type (WT) mice were fed with starch diets ad libitum and ad limitum. Fractional glucogenesis (fGG) derived from starch was measured and fractional gluconeogenesis and glycogenolysis were calculated. Carbohydrates in small intestine were determined. RESULTS: After ad libitum meals, null and WT had similar increases of blood glucose concentration. At low intakes, null mice had less (f)GG (P = 0.02) than WT mice, demonstrating the role of Mgam activity in ad limitum feeding; null mice did not reduce fGG responses to ad libitum intakes demonstrating the dominant role of SI activity during full feeding. Although fGG was rising after feeding, fractional gluconeogenesis fell, especially for null mice. CONCLUSIONS: The fGNG (endogenous glucogenesis) in null mice complemented the fGG (exogenous glucogenesis) to conserve prandial blood glucose concentrations. The hypotheses that Mgam contributes a high-efficiency activity on ad limitum intakes and SI dominates on ad libitum starch digestion were confirmed.
Assuntos
Carboidratos da Dieta/metabolismo , Digestão , Gluconeogênese , Glucose/metabolismo , Amido/metabolismo , Complexo Sacarase-Isomaltase/metabolismo , alfa-Glucosidases/metabolismo , Animais , Glicemia/metabolismo , Digestão/genética , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Intestino Delgado/enzimologia , Intestino Delgado/metabolismo , Camundongos , Camundongos Knockout , Mutação , Período Pós-Prandial , alfa-Glucosidases/genéticaRESUMO
OBJECTIVES: Maltase-glucoamylase (Mgam) and sucrase-isomaltase (Si) are mucosal α-glucosidases required for the digestion of starch to glucose. We hypothesized that a dietary approach to reduce Mgam and Si activities can reduce glucose generation and absorption, and improve glucose control. METHODS: Rice starch was entrapped in alginate microspheres to moderate in vitro digestion properties. Three groups of 8-wk old mice (n = 8) were conditioned for 7 d with low 13C-starch-based materials differing in digestion rates (fast, slow, and slower), and then given a digestible 13C-labeled cornstarch test feeding to determine its digestion to glucose. RESULTS: Conditioning of the small intestine with the slowly digestible starches for 7 d reduced jejunal α-glucosidase and sucrase activities, as well as glucose absorption for the slowly digestible starch slower group (P < 0.01). A correlative relationship was found between glucose absorption from a cornstarch test feeding given at d 7 and jejunal α-glucosidase and sucrase activities (R2 = 0.64; 0.67). However, total prandial glucose levels during the 2-h feeding period did not differ. CONCLUSIONS: Decreased glucogenesis from a digestible starch feeding was found in mice conditioned on slowly digestible starch diets, suggesting that a dietary approach incorporating slowly digestible starches may change α-glucosidase activities to moderate glucose absorption rate.
Assuntos
Digestão , alfa-Glucosidases , Animais , Dieta , Glucose , Camundongos , AmidoRESUMO
For starch digestion to glucose, two luminal α-amylases and four gut mucosal α-glucosidase subunits are employed. The aim of this research was to investigate, for the first time, direct digestion capability of individual mucosal α-glucosidases on cooked (gelatinized) starch. Gelatinized normal maize starch was digested with N- and C-terminal subunits of recombinant mammalian maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) of varying amounts and digestion periods. Without the aid of α-amylase, Ct-MGAM demonstrated an unexpected rapid and high digestion degree near 80%, while other subunits showed 20 to 30% digestion. These findings suggest that Ct-MGAM assists α-amylase in digesting starch molecules and potentially may compensate for developmental or pathological amylase deficiencies.
Assuntos
Intestino Delgado/enzimologia , Amido/metabolismo , alfa-Glucosidases/metabolismo , Animais , Culinária , Digestão , Gelatina/metabolismo , Temperatura Alta , Humanos , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Camundongos , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/metabolismo , alfa-Amilases/metabolismo , alfa-Glucosidases/genéticaRESUMO
BACKGROUND: Multiple enzyme deficiencies have been reported in some cases of congenital glucoamylase, sucrase, or lactase deficiency. Here we describe such a case and the investigations that we have made to determine the cause of this deficiency. METHODS AND RESULTS: A 2.5 month-old infant, admitted with congenital lactase deficiency, failed to gain weight on a glucose oligomer formula (Nutramigen). Jejunal mucosal biopsy at 4 and 12 months revealed normal histology with decreased maltase-glucoamylase, sucrase-isomaltase, and lactase-phlorizin hydrolase activities. Testing with a C-starch/breath CO loading test confirmed proximal starch malabsorption. Sequencing of maltase-glucoamylase cDNA revealed homozygosity for a nucleotide change (C1673T) in the infant, which causes an amino acid substitution (S542L) 12 amino acids after the N-terminal catalytic aspartic acid. The introduction of this mutation into "wildtype" N-terminus maltase-glucoamylase cDNA was not associated with obvious loss of maltase-glucoamylase enzyme activities when expressed in COS 1 cells and this amino-acid change was subsequently found in other people. Sequencing of the promoter region revealed no nucleotide changes. Maltase-glucoamylase, lactase, and sucrase-isomaltase were each normally synthesized and processed in organ culture. CONCLUSIONS: The lack of evidence for a causal nucleotide change in the maltase-glucoamylase gene in this patient, and the concomitant low levels of lactase and sucrase activity, suggest that the depletion of mucosal maltase-glucoamylase activity and starch digestion was caused by shared, pleiotropic regulatory factors.
Assuntos
Erros Inatos do Metabolismo dos Carboidratos/enzimologia , Mucosa Intestinal/enzimologia , Sacarase/deficiência , alfa-Glucosidases/deficiência , beta-Galactosidase/deficiência , Testes Respiratórios , Erros Inatos do Metabolismo dos Carboidratos/genética , DNA Complementar/química , DNA Complementar/genética , Humanos , Lactente , Absorção Intestinal , Mucosa Intestinal/patologia , Lactase , Masculino , Microvilosidades/enzimologia , Amido/metabolismo , Sacarase/genética , alfa-Glucosidases/genética , beta-Galactosidase/genéticaRESUMO
Administration of supplemental oxygen is frequently encountered in infants suffering from pulmonary insufficiency and in adults with acute respiratory distress syndrome. However, hyperoxia causes acute lung damage in experimental animals. In the present study, we investigated the roles of the Ah receptor (AHR) in the modulation of cytochrome P4501A (CYP1A) enzymes and in the development of lung injury by hyperoxia. Adult male wild-type [AHR (+/+)] mice and AHR-deficient animals [AHR (-/-)] were maintained in room air or exposed to hyperoxia (>95% oxygen) for 24 to 72 h, and pulmonary and hepatic expression of CYP1A and lung injury were studied. Hyperoxia caused significant increases in pulmonary and hepatic CYP1A1 activities (ethoxyresorufin O-deethylase) and mRNA levels in wild-type (C57BL/6J) AHR (+/+), but not AHR (-/-) mice, suggesting that AHR-dependent mechanisms contributed to CYP1A1 induction. On the other hand, hyperoxia augmented hepatic CYP1A2 expression in both wild-type and AHR (-/-) animals, suggesting that AHR-independent mechanisms contributed to the CYP1A2 regulation by hyperoxia. AHR (-/-) mice exposed to hyperoxia were more susceptible than wild-type mice to lung injury and inflammation, as indicated by significantly higher lung weight/body weight ratios, increased pulmonary edema, and enhanced neutrophil recruitment into the lungs. In conclusion, our results support the hypothesis that the hyperoxia induces CYP1A1, but not CYP1A2, expression in vivo by AHR-dependent mechanisms, a phenomenon that may mechanistically contribute to the beneficial effects of the AHR in hyperoxic lung injury.