RESUMO
BACKGROUND: Cardiac steatosis is an early yet overlooked feature of diabetic cardiomyopathy. There is no available therapy to treat this condition. Tyrosine kinase inhibitors (TKIs) are used as first or second-line therapy in different types of cancer. In cancer patients with diabetes mellitus, TKIs reportedly improved glycemic control, allowing insulin discontinuation. They also reduced liver steatosis in a murine model of non-alcoholic fatty liver disease. The present study aimed to determine the therapeutic effect of the second-generation TKI Dasatinib on lipid accumulation and cardiac function in obese, type 2 diabetic mice. We also assessed if the drug impacts extra-cardiac fat tissue depots. METHODS: Two studies on 21-week-old male obese leptin receptor mutant BKS.Cg-+Leprdb/+Leprdb/OlaHsd (db/db) mice compared the effect of Dasatinib (5 mg/kg) and vehicle (10% DMSO + 90% PEG-300) given via gavage once every three days for a week or once every week for four weeks. Functional and volumetric indices were studied using echocardiography. Post-mortem analyses included the assessment of fat deposits and fibrosis using histology, and senescence using immunohistochemistry and flow cytometry. The anti-adipogenic action of Dasatinib was investigated on human bone marrow (BM)-derived mesenchymal stem cells (MSCs). Unpaired parametric or non-parametric tests were used to compare two and multiple groups as appropriate. RESULTS: Dasatinib reduced steatosis and fibrosis in the heart of diabetic mice. The drug also reduced BM adiposity but did not affect other fat depots. These structural changes were associated with improved diastolic indexes, specifically the E/A ratio and non-flow time. Moreover, Dasatinib-treated mice had lower levels of p16 in the heart compared with vehicle-treated controls, suggesting an inhibitory impact of the drug on the senescence signalling pathway. In vitro, Dasatinib inhibited human BM-MSC viability and adipogenesis commitment. CONCLUSIONS: Our findings suggest that Dasatinib opposes heart and BM adiposity and cardiac fibrosis. In the heart, this was associated with favourable functional consequences, namely improvement in an index of diastolic function. Repurposing TKI for cardiac benefit could address the unmet need of diabetic cardiac steatosis.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Animais , Camundongos , Dasatinibe/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Fibrose , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológicoRESUMO
The prominent impact that coronary microcirculation disease (CMD) exerts on heart failure symptoms and prognosis, even in the presence of macrovascular atherosclerosis, has been recently acknowledged. Experimental delivery of pericytes in non-revascularized myocardial infarction improves cardiac function by stimulating angiogenesis and myocardial perfusion. Aim of this work is to verify if pericytes (Pc) residing in ischemic failing human hearts display altered mechano-transduction properties and to assess which alterations of the mechano-sensing machinery are associated with the observed impaired response to mechanical cues. RESULTS: Microvascular rarefaction and defects of YAP/TAZ activation characterize failing human hearts. Although both donor (D-) and explanted (E-) heart derived cardiac Pc support angiogenesis, D-Pc exert this effect significantly better than E-Pc. The latter are characterized by reduced focal adhesion density, decreased activation of the focal adhesion kinase (FAK)/ Crk-associated substrate (CAS) pathway, low expression of caveolin-1, and defective transduction of extracellular stiffness into cytoskeletal stiffening, together with an impaired response to both fibronectin and lysophosphatidic acid. Importantly, Mitogen-activated protein kinase kinase inhibition restores YAP/TAZ nuclear translocation. CONCLUSION: Heart failure impairs Pc mechano-transduction properties, but this defect could be reversed pharmacologically.
Assuntos
Insuficiência Cardíaca/patologia , Mecanotransdução Celular , Miocárdio/patologia , Pericitos/metabolismo , Pericitos/patologia , Actomiosina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fenômenos Biomecânicos , Caveolina 1/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Vasos Coronários/patologia , Vasos Coronários/fisiopatologia , Citoesqueleto/metabolismo , Adesões Focais , Humanos , Microvasos/patologia , Microvasos/fisiopatologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Transporte Proteico , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas de Sinalização YAPRESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a broad range of clinical responses including prominent microvascular damage. The capacity of SARS-CoV-2 to infect vascular cells is still debated. Additionally, the SARS-CoV-2 Spike (S) protein may act as a ligand to induce non-infective cellular stress. We tested this hypothesis in pericytes (PCs), which are reportedly reduced in the heart of patients with severe coronavirus disease-2019 (COVID-19). Here we newly show that the in vitro exposure of primary human cardiac PCs to the SARS-CoV-2 wildtype strain or the α and δ variants caused rare infection events. Exposure to the recombinant S protein alone elicited signalling and functional alterations, including: (1) increased migration, (2) reduced ability to support endothelial cell (EC) network formation on Matrigel, (3) secretion of pro-inflammatory molecules typically involved in the cytokine storm, and (4) production of pro-apoptotic factors causing EC death. Next, adopting a blocking strategy against the S protein receptors angiotensin-converting enzyme 2 (ACE2) and CD147, we discovered that the S protein stimulates the phosphorylation/activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) through the CD147 receptor, but not ACE2, in PCs. The neutralisation of CD147, either using a blocking antibody or mRNA silencing, reduced ERK1/2 activation, and rescued PC function in the presence of the S protein. Immunoreactive S protein was detected in the peripheral blood of infected patients. In conclusion, our findings suggest that the S protein may prompt PC dysfunction, potentially contributing to microvascular injury. This mechanism may have clinical and therapeutic implications.
Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Basigina/metabolismo , Miocárdio/enzimologia , Pericitos/enzimologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , Células CACO-2 , Morte Celular , Criança , Pré-Escolar , Citocinas/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Miocárdio/citologia , Pericitos/virologia , Cultura Primária de Células , Adulto JovemRESUMO
Objective- To determine the role of the oncofetal protein TPBG (trophoblast glycoprotein) in normal vascular function and reparative vascularization. Approach and Results- Immunohistochemistry of human veins was used to show TPBG expression in vascular smooth muscle cells and adventitial pericyte-like cells (APCs). ELISA, Western blot, immunocytochemistry, and proximity ligation assays evidenced a hypoxia-dependent upregulation of TPBG in APCs not found in vascular smooth muscle cells or endothelial cells. This involves the transcriptional modulator CITED2 (Atypical chemokine receptor 3 CBP/p300-interacting transactivator with glutamic acid (E)/aspartic acid (D)-rich tail) and downstream activation of CXCL12 (chemokine [C-X-C motif] ligand-12) signaling through the CXCR7 (C-X-C chemokine receptor type 7) receptor and ERK1/2 (extracellular signal-regulated kinases 1/2). TPBG silencing by siRNA transfection downregulated CXCL12, CXCR7, and pERK (phospho Thr202/Tyr204 ERK1/2) and reduced the APC migratory and proangiogenic capacities. TPBG forced expression induced opposite effects, which were associated with the formation of CXCR7/CXCR4 (C-X-C chemokine receptor type 4) heterodimers and could be contrasted by CXCL12 and CXCR7 neutralization. In vivo Matrigel plug assays using APCs with or without TPBG silencing evidenced TPBG is essential for angiogenesis. Finally, in immunosuppressed mice with limb ischemia, intramuscular injection of TPBG-overexpressing APCs surpassed naïve APCs in enhancing perfusion recovery and reducing the rate of toe necrosis. Conclusions- TPBG orchestrates the migratory and angiogenic activities of pericytes through the activation of the CXCL12/CXCR7/pERK axis. This novel mechanism could be a relevant target for therapeutic improvement of reparative angiogenesis.
Assuntos
Movimento Celular , Glicoproteínas de Membrana/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Pericitos/metabolismo , Veia Safena/metabolismo , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Membro Posterior , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatologia , Isquemia/cirurgia , Masculino , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Nus , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Pericitos/transplante , Fosforilação , Receptores CXCR/genética , Receptores CXCR/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismoRESUMO
AIMS/HYPOTHESIS: Sensory neuropathy is common in people with diabetes; neuropathy can also affect the bone marrow of individuals with type 2 diabetes. However, no information exists on the state of bone marrow sensory innervation in type 1 diabetes. Sensory neurons are trophically dependent on nerve growth factor (NGF) for their survival. The aim of this investigation was twofold: (1) to determine if sensory neuropathy affects the bone marrow in a mouse model of type 1 diabetes, with consequences for stem cell liberation after tissue injury; and (2) to verify if a single systemic injection of the NGF gene exerts long-term beneficial effects on these phenomena. METHODS: A mouse model of type 1 diabetes was generated in CD1 mice by administration of streptozotocin; vehicle was administered to non-diabetic control animals. Diabetic animals were randomised to receive systemic gene therapy with either human NGF or ß-galactosidase. After 13 weeks, limb ischaemia was induced in both groups to study the recovery post injury. When the animals were killed, samples of tissue and peripheral blood were taken to assess stem cell mobilisation and homing, levels of substance P and muscle vascularisation. An in vitro cellular model was adopted to verify signalling downstream to human NGF and related neurotrophic or pro-apoptotic effects. Normally distributed variables were compared between groups using the unpaired Student's t test and non-normally distributed variables were assessed by the Wilcoxon-Mann-Whitney test. The Fisher's exact test was employed for categorical variables. RESULTS: Immunohistochemistry indicated a 3.3-fold reduction in the number of substance P-positive nociceptive fibres in the bone marrow of type 1 diabetic mice (p < 0.001 vs non-diabetic). Moreover, diabetes abrogated the creation of a neurokinin gradient which, in non-diabetic mice, favoured the mobilisation and homing of bone-marrow-derived stem cells expressing the substance P receptor neurokinin 1 receptor (NK1R). Pre-emptive gene therapy with NGF prevented bone marrow denervation, contrasting with the inhibitory effect of diabetes on the mobilisation of NK1R-expressing stem cells, and restored blood flow recovery from limb ischaemia. In vitro hNGF induced neurite outgrowth and exerted anti-apoptotic actions on rat PC12 cells exposed to high glucose via activation of the canonical neurotrophic tyrosine kinase receptor type 1 (TrkA) signalling pathway. CONCLUSIONS/INTERPRETATION: This study shows, for the first time, the occurrence of sensory neuropathy in the bone marrow of type 1 diabetic mice, which translates into an altered modulation of substance P and depressed release of substance P-responsive stem cells following ischaemia. NGF therapy improves bone marrow sensory innervation, with benefits for healing on the occurrence of peripheral ischaemia. Nociceptors may represent a new target for the treatment of ischaemic complications in diabetes.
Assuntos
Diabetes Mellitus Tipo 1/terapia , Terapia Genética/métodos , Fator de Crescimento Neural/metabolismo , Células Receptoras Sensoriais/citologia , Células-Tronco/citologia , Animais , Medula Óssea , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/metabolismo , Imuno-Histoquímica , Isquemia/terapia , Masculino , Camundongos , Células Receptoras Sensoriais/metabolismo , Células-Tronco/metabolismoRESUMO
RATIONALE: Optimization of cell therapy for cardiac repair may require the association of different cell populations with complementary activities. OBJECTIVE: Compare the reparative potential of saphenous vein-derived pericytes (SVPs) with that of cardiac stem cells (CSCs) in a model of myocardial infarction, and investigate whether combined cell transplantation provides further improvements. METHODS AND RESULTS: SVPs and CSCs were isolated from vein leftovers of coronary artery bypass graft surgery and discarded atrial specimens of transplanted hearts, respectively. Single or dual cell therapy (300 000 cells of each type per heart) was tested in infarcted SCID (severe combined immunodeficiency)-Beige mice. SVPs and CSCs alone improved cardiac contractility as assessed by echocardiography at 14 days post myocardial infarction. The effect was maintained, although attenuated at 42 days. At histological level, SVPs and CSCs similarly inhibited infarct size and interstitial fibrosis, SVPs were superior in inducing angiogenesis and CSCs in promoting cardiomyocyte proliferation and recruitment of endogenous stem cells. The combination of cells additively reduced the infarct size and promoted vascular proliferation and arteriogenesis, but did not surpass single therapies with regard to contractility indexes. SVPs and CSCs secrete similar amounts of hepatocyte growth factor, vascular endothelial growth factor, fibroblast growth factor, stem cell factor, and stromal cell-derived factor-1, whereas SVPs release higher quantities of angiopoietins and microRNA-132. Coculture of the 2 cell populations results in competitive as well as enhancing paracrine activities. In particular, the release of stromal cell-derived factor-1 was synergistically augmented along with downregulation of stromal cell-derived factor-1-degrading enzyme dipeptidyl peptidase 4. CONCLUSIONS: Combinatory therapy with SVPs and CSCs may complementarily help the repair of infarcted hearts.
Assuntos
Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Miócitos Cardíacos/transplante , Neovascularização Fisiológica , Pericitos/transplante , Regeneração , Transplante de Células-Tronco , Proteínas Angiogênicas/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Fibrose , Hemodinâmica , Humanos , Camundongos SCID , Contração Miocárdica , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Comunicação Parácrina , Pericitos/metabolismo , Fenótipo , Recuperação de Função Fisiológica , Veia Safena/citologia , Fatores de Tempo , Remodelação VentricularRESUMO
OBJECTIVE: We investigated the association between the functional, epigenetic, and expressional profile of human adventitial progenitor cells (APCs) and therapeutic activity in a model of limb ischemia. APPROACH AND RESULTS: Antigenic and functional features were analyzed throughout passaging in 15 saphenous vein (SV)-derived APC lines, of which 10 from SV leftovers of coronary artery bypass graft surgery and 5 from varicose SV removal. Moreover, 5 SV-APC lines were transplanted (8×10(5) cells, IM) in mice with limb ischemia. Blood flow and capillary and arteriole density were correlated with functional characteristics and DNA methylation/expressional markers of transplanted cells. We report successful expansion of tested lines, which reached the therapeutic target of 30 to 50 million cells in ≈10 weeks. Typical antigenic profile, viability, and migratory and proangiogenic activities were conserved through passaging, with low levels of replicative senescence. In vivo, SV-APC transplantation improved blood flow recovery and revascularization of ischemic limbs. Whole genome screening showed an association between DNA methylation at the promoter or gene body level and microvascular density and to a lesser extent with blood flow recovery. Expressional studies highlighted the implication of an angiogenic network centered on the vascular endothelial growth factor receptor as a predictor of microvascular outcomes. FLT-1 gene silencing in SV-APCs remarkably reduced their ability to form tubes in vitro and support tube formation by human umbilical vein endothelial cells, thus confirming the importance of this signaling in SV-APC angiogenic function. CONCLUSIONS: DNA methylation landscape illustrates different therapeutic activities of human APCs. Epigenetic screening may help identify determinants of therapeutic vasculogenesis in ischemic disease.
Assuntos
Túnica Adventícia/transplante , Metilação de DNA , Epigênese Genética , Isquemia/cirurgia , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Veia Safena/transplante , Transplante de Células-Tronco , Células-Tronco/fisiologia , Túnica Adventícia/citologia , Animais , Velocidade do Fluxo Sanguíneo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Isquemia/genética , Isquemia/fisiopatologia , Camundongos , Neovascularização Fisiológica/genética , Recuperação de Função Fisiológica , Fluxo Sanguíneo Regional , Veia Safena/citologia , Células-Tronco/metabolismo , Fatores de TempoRESUMO
Reparative response by bone marrow (BM)-derived progenitor cells (PCs) to ischemia is a multistep process that comprises the detachment from the BM endosteal niche through activation of osteoclasts and proteolytic enzymes (such as matrix metalloproteinases (MMPs)), mobilization to the circulation, and homing to the injured tissue. We previously showed that intramyocardial nerve growth factor gene transfer (NGF-GT) promotes cardiac repair following myocardial infarction (MI) in mice. Here, we investigate the impact of cardiac NGF-GT on postinfarction BM-derived PCs mobilization and homing at different time points after adenovirus-mediated NGF-GT in mice. Immunohistochemistry and flow cytometry newly illustrate the temporal profile of osteoclast and activation of MMP9, PCs expansion in the BM, and liberation/homing to the injured myocardium. NGF-GT amplified these responses and increased the BM levels of active osteoclasts and MMP9, which were not observed in MMP9-deficient mice. Taken together, our results suggest a novel role for NGF in BM-derived PCs mobilization/homing following MI.
Assuntos
Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Infarto do Miocárdio/genética , Miocárdio/patologia , Fator de Crescimento Neural/metabolismo , Adenoviridae/genética , Animais , Transplante de Medula Óssea , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Fator de Crescimento Neural/genética , Osteoclastos/citologiaRESUMO
Cardiac stem cells (CSC) from explanted decompensated hearts (E-CSC) are, with respect to those obtained from healthy donors (D-CSC), senescent and functionally impaired. We aimed to identify alterations in signaling pathways that are associated with CSC senescence. Additionally, we investigated if pharmacological modulation of altered pathways can reduce CSC senescence in vitro and enhance their reparative ability in vivo. Measurement of secreted factors showed that E-CSC release larger amounts of proinflammatory cytokine IL1ß compared with D-CSC. Using blocking antibodies, we verified that IL1ß hampers the paracrine protective action of E-CSC on cardiomyocyte viability. IL1ß acts intracranially inducing IKKß signaling, a mechanism that via nuclear factor-κB upregulates the expression of IL1ß itself. Moreover, E-CSC show reduced levels of AMP protein kinase (AMPK) activating phosphorylation. This latter event, together with enhanced IKKß signaling, increases TORC1 activity, thereby impairing the autophagic flux and inhibiting the phosphorylation of Akt and cAMP response element-binding protein. The combined use of rapamycin and resveratrol enhanced AMPK, thereby restoring downstream signaling and reducing IL1ß secretion. These molecular corrections reduced E-CSC senescence, re-establishing their protective activity on cardiomyocytes. Moreover ex vivo treatment with rapamycin and resveratrol improved E-CSC capacity to induce cardiac repair upon injection in the mouse infarcted heart, leading to reduced cardiomyocyte senescence and apoptosis and increased abundance of endogenous c-Kit(+) CSC in the peri-infarct area. Molecular rejuvenation of patient-derived CSC by short pharmacologic conditioning boosts their in vivo reparative abilities. This approach might prove useful for refinement of CSC-based therapies.
Assuntos
Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/métodos , Animais , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos SCID , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Resveratrol , Transdução de Sinais , Sirolimo/farmacologia , Estilbenos/farmacologiaRESUMO
RATIONALE: The impact of diabetes mellitus on bone marrow (BM) structure is incompletely understood. OBJECTIVE: Investigate the effect of type-2 diabetes mellitus (T2DM) on BM microvascular and hematopoietic cell composition in patients without vascular complications. METHODS AND RESULTS: Bone samples were obtained from T2DM patients and nondiabetic controls (C) during hip replacement surgery and from T2DM patients undergoing amputation for critical limb ischemia. BM composition was assessed by histomorphometry, immunostaining, and flow cytometry. Expressional studies were performed on CD34(pos) immunosorted BM progenitor cells (PCs). Diabetes mellitus causes a reduction of hematopoietic tissue, fat deposition, and microvascular rarefaction, especially when associated with critical limb ischemia. Immunohistochemistry documented increased apoptosis and reduced abundance of CD34(pos)-PCs in diabetic groups. Likewise, flow cytometry showed scarcity of BM PCs in T2DM and T2DM+critical limb ischemia compared with C, but similar levels of mature hematopoietic cells. Activation of apoptosis in CD34(pos)-PCs was associated with upregulation and nuclear localization of the proapoptotic factor FOXO3a and induction of FOXO3a targets, p21 and p27(kip1). Moreover, microRNA-155, which regulates cell survival through inhibition of FOXO3a, was downregulated in diabetic CD34(pos)-PCs and inversely correlated with FOXO3a levels. The effect of diabetes mellitus on anatomic and molecular end points was confirmed when considering background covariates. Furthermore, exposure of healthy CD34(pos)-PCs to high glucose reproduced the transcriptional changes induced by diabetes mellitus, with this effect being reversed by forced expression of microRNA-155. CONCLUSIONS: We provide new anatomic and molecular evidence for the damaging effect of diabetes mellitus on human BM, comprising microvascular rarefaction and shortage of PCs attributable to activation of proapoptotic pathway.
Assuntos
Células da Medula Óssea/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Angiopatias Diabéticas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/metabolismo , Microvasos/metabolismo , Transdução de Sinais , Nicho de Células-Tronco , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD34/metabolismo , Apoptose , Biomarcadores/metabolismo , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Exame de Medula Óssea , Estudos de Casos e Controles , Linhagem da Célula , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Citometria de Fluxo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/patologia , Humanos , Imuno-Histoquímica , Isquemia/genética , Isquemia/metabolismo , Isquemia/patologia , Masculino , MicroRNAs/genética , Microvasos/imunologia , Microvasos/patologia , Pessoa de Meia-Idade , Doença Arterial Periférica/genética , Doença Arterial Periférica/metabolismo , Doença Arterial Periférica/patologia , TransfecçãoRESUMO
Millions of cardiomyocytes die immediately after myocardial infarction, regardless of whether the culprit coronary artery undergoes prompt revascularization. Residual ischaemia in the peri-infarct border zone causes further cardiomyocyte damage, resulting in a progressive decline in contractile function. To date, no treatment has succeeded in increasing the vascularization of the infarcted heart. In the past decade, new approaches that can target the heart's highly plastic perivascular niche have been proposed. The perivascular environment is populated by mesenchymal progenitor cells, fibroblasts, myofibroblasts and pericytes, which can together mount a healing response to the ischaemic damage. In the infarcted heart, pericytes have crucial roles in angiogenesis, scar formation and stabilization, and control of the inflammatory response. Persistent ischaemia and accrual of age-related risk factors can lead to pericyte depletion and dysfunction. In this Review, we describe the phenotypic changes that characterize the response of cardiac pericytes to ischaemia and the potential of pericyte-based therapy for restoring the perivascular niche after myocardial infarction. Pericyte-related therapies that can salvage the area at risk of an ischaemic injury include exogenously administered pericytes, pericyte-derived exosomes, pericyte-engineered biomaterials, and pharmacological approaches that can stimulate the differentiation of constitutively resident pericytes towards an arteriogenic phenotype. Promising preclinical results from in vitro and in vivo studies indicate that pericytes have crucial roles in the treatment of coronary artery disease and the prevention of post-ischaemic heart failure.
Assuntos
Infarto do Miocárdio , Pericitos , Humanos , Pericitos/fisiologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos , Isquemia , Vasos CoronáriosRESUMO
Cardiovascular disease (CVD) represents the leading cause of mortality and disability all over the world. Identifying new targeted therapeutic approaches has become a priority of biomedical research to improve patient outcomes and quality of life. The RAS-RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway is gaining growing interest as a potential signaling cascade implicated in the pathogenesis of CVD. This pathway is pivotal in regulating cellular processes like proliferation, growth, migration, differentiation, and survival, which are vital in maintaining cardiovascular homeostasis. In addition, ERK signaling is involved in controlling angiogenesis, vascular tone, myocardial contractility, and oxidative stress. Dysregulation of this signaling cascade has been linked to cell dysfunction and vascular and cardiac pathological remodeling, which contribute to the onset and progression of CVD. Recent and ongoing research has provided insights into potential therapeutic interventions targeting the RAS-RAF-MEK-ERK pathway to improve cardiovascular pathologies. Preclinical studies have demonstrated the efficacy of targeted therapy with MEK inhibitors (MEKI) in attenuating ERK activation and mitigating CVD progression in animal models. In this article, we first describe how ERK signaling contributes to preserving cardiovascular health. We then summarize current knowledge of the roles played by ERK in the development and progression of cardiac and vascular disorders, including atherosclerosis, myocardial infarction, cardiac hypertrophy, heart failure, and aortic aneurysm. We finally report novel therapeutic strategies for these CVDs encompassing MEKI and discuss advantages, challenges, and future developments for MEKI therapeutics.
RESUMO
BACKGROUND: Pain triggers a homeostatic alarm reaction to injury. It remains unknown, however, whether nociceptive signaling activated by ischemia is relevant for progenitor cells (PC) release from bone marrow. To this end, we investigated the role of the neuropeptide substance P (SP) and cognate neurokinin 1 (NK1) nociceptor in PC activation and angiogenesis during ischemia in mice and in human subjects. METHODS AND RESULTS: The mouse bone marrow contains sensory fibers and PC that express SP. Moreover, SP-induced migration provides enrichment for PC that express NK1 and promote reparative angiogenesis after transplantation in a mouse model of limb ischemia. Acute myocardial infarction and limb ischemia increase SP levels in peripheral blood, decrease SP levels in bone marrow, and stimulate the mobilization of NK1-expressing PC, with these effects being abrogated by systemic administration of the opioid receptor agonist morphine. Moreover, bone marrow reconstitution with NK1-knockout cells results in depressed PC mobilization, delayed blood flow recovery, and reduced neovascularization after ischemia. We next asked whether SP is instrumental to PC mobilization and homing in patients with ischemia. Human PC express NK1, and SP-induced migration provides enrichment for proangiogenic PC. Patients with acute myocardial infarction show high circulating levels of SP and NK1-positive cells that coexpress PC antigens, such as CD34, KDR, and CXCR4. Moreover, NK1-expressing PC are abundant in infarcted hearts but not in hearts that developed an infarct after transplantation. CONCLUSIONS: Our data highlight the role of SP in reparative neovascularization. Nociceptive signaling may represent a novel target of regenerative medicine.
Assuntos
Isquemia/fisiopatologia , Neovascularização Fisiológica , Nociceptividade/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Substância P/fisiologia , Animais , Mobilização de Células-Tronco Hematopoéticas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/fisiologia , Receptores da Neurocinina-1/fisiologiaRESUMO
RATIONALE: Studies in transgenic mice showed the key role of (Pim-1) (proviral integration site for Moloney murine leukemia virus-1) in the control of cardiomyocyte function and viability. OBJECTIVE: We investigated whether Pim-1 represents a novel mechanistic target for the cure of diabetic cardiomyopathy, a steadily increasing cause of nonischemic heart failure. METHODS AND RESULTS: In streptozotocin-induced type 1 diabetic mice, Pim-1 protein levels declined during progression of cardiomyopathy, along with upregulation of Pim-1 inhibitors, protein phosphatase 2A, and microRNA-1. Moreover, diabetic hearts showed low levels of antiapoptotic B-cell lymphoma-2 (Bcl-2) protein and increased proapoptotic caspase-3 activity. Studies on adult rat cardiomyocytes and murine cardiac progenitor cells challenged with high glucose confirmed the in vivo expressional changes. In rescue studies, anti-microRNA-1 boosted Pim-1 and Bcl-2 expression and promoted cardiomyocyte and cardiac progenitor cell survival under high glucose conditions. Similarly, transfection with Pim-1 plasmid prevented high glucose-induced cardiomyocyte and cardiac progenitor cell apoptosis. Finally, a single intravenous injection of human PIM-1 via cardiotropic serotype-9 adeno-associated virus (1 × 10(10) or 5 × 10(10) plaque-forming units per animal) at 4 weeks after diabetes induction led to sustained cardiac overexpression of Pim-1 and improved diastolic function and prevented left ventricular dilation and failure. Histological examination showed reduced cardiomyocyte apoptosis and fibrosis in association with increased c-kit(+) cells and cardiomyocyte proliferation, whereas molecular analysis confirmed activation of the prosurvival pathway and conservation of sarcoendoplasmic reticulum Ca(2+)-ATPase and α-myosin heavy chain in Pim-1-treated hearts. CONCLUSIONS: Pim-1 downregulation contributes in the pathogenesis of diabetic cardiomyopathy. Systemic delivery of human PIM-1 via cardiotropic adeno-associated virus serotype-9 represents a novel and effective approach to treat diabetic cardiomyopathy.
Assuntos
Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/prevenção & controle , Progressão da Doença , Terapia Genética/métodos , Vetores Genéticos/genética , Proteínas Proto-Oncogênicas c-pim-1/administração & dosagem , Proteínas Proto-Oncogênicas c-pim-1/genética , Transdução de Sinais/genética , Animais , Apoptose/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Cardiomiopatias Diabéticas/patologia , Vetores Genéticos/administração & dosagem , Glucose/administração & dosagem , Humanos , Injeções Intravenosas , Masculino , Camundongos , Plasmídeos/administração & dosagem , Ratos , Ratos WistarRESUMO
RATIONALE: Pericytes are key regulators of vascular maturation, but their value for cardiac repair remains unknown. OBJECTIVE: We investigated the therapeutic activity and mechanistic targets of saphenous vein-derived pericyte progenitor cells (SVPs) in a mouse myocardial infarction (MI) model. METHODS AND RESULTS: SVPs have a low immunogenic profile and are resistant to hypoxia/starvation (H/S). Transplantation of SVPs into the peri-infarct zone of immunodeficient CD1/Foxn-1(nu/nu) or immunocompetent CD1 mice attenuated left ventricular dilatation and improved ejection fraction compared to vehicle. Moreover, SVPs reduced myocardial scar, cardiomyocyte apoptosis and interstitial fibrosis, improved myocardial blood flow and neovascularization, and attenuated vascular permeability. SVPs secrete vascular endothelial growth factor A, angiopoietin-1, and chemokines and induce an endogenous angiocrine response by the host, through recruitment of vascular endothelial growth factor B expressing monocytes. The association of donor- and recipient-derived stimuli activates the proangiogenic and prosurvival Akt/eNOS/Bcl-2 signaling pathway. Moreover, microRNA-132 (miR-132) was constitutively expressed and secreted by SVPs and remarkably upregulated, together with its transcriptional activator cyclic AMP response element-binding protein, on stimulation by H/S or vascular endothelial growth factor B. We next investigated if SVP-secreted miR-132 acts as a paracrine activator of cardiac healing. In vitro studies showed that SVP conditioned medium stimulates endothelial tube formation and reduces myofibroblast differentiation, through inhibition of Ras-GTPase activating protein and methyl-CpG-binding protein 2, which are validated miR-132 targets. Furthermore, miR-132 inhibition by antimiR-132 decreased SVP capacity to improve contractility, reparative angiogenesis, and interstitial fibrosis in infarcted hearts. CONCLUSION: SVP transplantation produces long-term improvement of cardiac function through a novel paracrine mechanism involving the secretion of miR-132 and inhibition of its target genes.
Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , MicroRNAs/biossíntese , Infarto do Miocárdio/cirurgia , Neovascularização Fisiológica/fisiologia , Pericitos/transplante , Células-Tronco , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Pericitos/metabolismo , Ratos , Células-Tronco/metabolismoRESUMO
Long-living individuals (LLIs) escape age-related cardiovascular complications until the very last stage of life. Previous studies have shown that a Longevity-Associated Variant (LAV) of the BPI Fold Containing Family B Member 4 (BPIFB4) gene correlates with an extraordinarily prolonged life span. Moreover, delivery of the LAV-BPIFB4 gene exerted therapeutic action in murine models of atherosclerosis, limb ischemia, diabetic cardiomyopathy, and aging. We hypothesize that downregulation of BPIFB4 expression marks the severity of coronary artery disease (CAD) in human subjects, and supplementation of the LAV-BPIFB4 protects the heart from ischemia. In an elderly cohort with acute myocardial infarction (MI), patients with three-vessel CAD were characterized by lower levels of the natural logarithm (Ln) of peripheral blood BPIFB4 (p = 0.0077). The inverse association between Ln BPIFB4 and three-vessel CAD was confirmed by logistic regression adjusting for confounders (Odds Ratio = 0.81, p = 0.0054). Moreover, in infarcted mice, a single administration of LAV-BPIFB4 rescued cardiac function and vascularization. In vitro studies showed that LAV-BPIFB4 protein supplementation exerted chronotropic and inotropic actions on induced pluripotent stem cell (iPSC)-derived cardiomyocytes. In addition, LAV-BPIFB4 inhibited the pro-fibrotic phenotype in human cardiac fibroblasts. These findings provide a strong rationale and proof of concept evidence for treating CAD with the longevity BPIFB4 gene/protein.
Assuntos
Doença da Artéria Coronariana , Peptídeos e Proteínas de Sinalização Intercelular , Longevidade , Idoso , Animais , Humanos , Camundongos , Envelhecimento/genética , Haplótipos/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Isquemia , Longevidade/genéticaRESUMO
AIMS: The ageing heart naturally incurs a progressive decline in function and perfusion that available treatments cannot halt. However, some exceptional individuals maintain good health until the very late stage of their life due to favourable gene-environment interaction. We have previously shown that carriers of a longevity-associated variant (LAV) of the BPIFB4 gene enjoy prolonged health spans and lesser cardiovascular complications. Moreover, supplementation of LAV-BPIFB4 via an adeno-associated viral vector improves cardiovascular performance in limb ischaemia, atherosclerosis, and diabetes models. Here, we asked whether the LAV-BPIFB4 gene could address the unmet therapeutic need to delay the heart's spontaneous ageing. METHODS AND RESULTS: Immunohistological studies showed a remarkable reduction in vessel coverage by pericytes in failing hearts explanted from elderly patients. This defect was attenuated in patients carrying the homozygous LAV-BPIFB4 genotype. Moreover, pericytes isolated from older hearts showed low levels of BPIFB4, depressed pro-angiogenic activity, and loss of ribosome biogenesis. LAV-BPIFB4 supplementation restored pericyte function and pericyte-endothelial cell interactions through a mechanism involving the nucleolar protein nucleolin. Conversely, BPIFB4 silencing in normal pericytes mimed the heart failure pericytes. Finally, gene therapy with LAV-BPIFB4 prevented cardiac deterioration in middle-aged mice and rescued cardiac function and myocardial perfusion in older mice by improving microvasculature density and pericyte coverage. CONCLUSIONS: We report the success of the LAV-BPIFB4 gene/protein in improving homeostatic processes in the heart's ageing. These findings open to using LAV-BPIFB4 to reverse the decline of heart performance in older people.
Assuntos
Cardiomiopatias , Longevidade , Animais , Camundongos , Envelhecimento/genética , Cardiomiopatias/genética , Cardiomiopatias/patologia , Fenômenos Fisiológicos Cardiovasculares , Genótipo , Longevidade/genética , Pericitos/patologiaRESUMO
Pericytes (PCs) are abundant yet remain the most enigmatic and ill-defined cell population in the heart. Here, we investigated whether PCs can be reprogrammed to aid neovascularization. Primary PCs from human and mouse hearts acquired cytoskeletal proteins typical of vascular smooth muscle cells (VSMCs) upon exclusion of EGF/bFGF, which signal through ERK1/2, or upon exposure to the MEK inhibitor PD0325901. Differentiated PCs became more proangiogenic, more responsive to vasoactive agents, and insensitive to chemoattractants. RNA sequencing revealed transcripts marking the PD0325901-induced transition into proangiogenic, stationary VSMC-like cells, including the unique expression of 2 angiogenesis-related markers, aquaporin 1 (AQP1) and cellular retinoic acid-binding protein 2 (CRABP2), which were further verified at the protein level. This enabled us to trace PCs during in vivo studies. In mice, implantation of Matrigel plugs containing human PCs plus PD0325901 promoted the formation of αSMA+ neovessels compared with PC only. Two-week oral administration of PD0325901 to mice increased the heart arteriolar density, total vascular area, arteriole coverage by PDGFRß+AQP1+CRABP2+ PCs, and myocardial perfusion. Short-duration PD0325901 treatment of mice after myocardial infarction enhanced the peri-infarct vascularization, reduced the scar, and improved systolic function. In conclusion, myocardial PCs have intrinsic plasticity that can be pharmacologically modulated to promote reparative vascularization of the ischemic heart.
Assuntos
Neovascularização Patológica , Pericitos , Animais , Benzamidas/farmacologia , Isquemia/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Miocárdio/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Pericitos/metabolismoRESUMO
In many countries, COVID-19 now accounts for more deaths per year than car accidents and even the deadliest wars. Combating the viral pandemics requires a coordinated effort to develop therapeutic protocols adaptable to the disease severity. In this review article, we summarize a graded approach aiming to shield cells from SARS-CoV-2 entry and infection, inhibit excess inflammation and evasion of the immune response, and ultimately prevent systemic organ failure. Moreover, we focus on mesenchymal stem cell therapy, which has shown safety and efficacy as a treatment of inflammatory and immune diseases. The cell therapy approach is now repurposed in patients with severe COVID-19. Numerous trials of mesenchymal stem cell therapy are ongoing, especially in China and the USA. Leader companies in cell therapy have also started controlled trials utilizing their quality assessed cell products. Results are too premature to reach definitive conclusions.