Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
EMBO Rep ; 24(6): e54600, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37073791

RESUMO

Inflammasome signaling is a central pillar of innate immunity triggering inflammation and cell death in response to microbes and danger signals. Here, we show that two virulence factors from the human bacterial pathogen Clostridium perfringens are nonredundant activators of the NLRP3 inflammasome in mice and humans. C. perfringens lecithinase (also known as phospolipase C) and C. perfringens perfringolysin O induce distinct mechanisms of activation. Lecithinase enters LAMP1+ vesicular structures and induces lysosomal membrane destabilization. Furthermore, lecithinase induces the release of the inflammasome-dependent cytokines IL-1ß and IL-18, and the induction of cell death independently of the pore-forming proteins gasdermin D, MLKL and the cell death effector protein ninjurin-1 or NINJ1. We also show that lecithinase triggers inflammation via the NLRP3 inflammasome in vivo and that pharmacological blockade of NLRP3 using MCC950 partially prevents lecithinase-induced lethality. Together, these findings reveal that lecithinase activates an alternative pathway to induce inflammation during C. perfringens infection and that this mode of action can be similarly exploited for sensing by a single inflammasome.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Clostridium perfringens/metabolismo , Fatores de Virulência , Inflamação , Interleucina-1beta/metabolismo , Fatores de Crescimento Neural , Moléculas de Adesão Celular Neuronais
2.
PLoS Genet ; 16(12): e1009246, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315869

RESUMO

How organisms develop into specific shapes is a central question in biology. The maintenance of bacterial shape is connected to the assembly and remodelling of the cell envelope. In endospore-forming bacteria, the pre-spore compartment (the forespore) undergoes morphological changes that result in a spore of defined shape, with a complex, multi-layered cell envelope. However, the mechanisms that govern spore shape remain poorly understood. Here, using a combination of fluorescence microscopy, quantitative image analysis, molecular genetics and transmission electron microscopy, we show that SsdC (formerly YdcC), a poorly-characterized new member of the MucB / RseB family of proteins that bind lipopolysaccharide in diderm bacteria, influences spore shape in the monoderm Bacillus subtilis. Sporulating cells lacking SsdC fail to adopt the typical oblong shape of wild-type forespores and are instead rounder. 2D and 3D-fluorescence microscopy suggest that SsdC forms a discontinuous, dynamic ring-like structure in the peripheral membrane of the mother cell, near the mother cell proximal pole of the forespore. A synthetic sporulation screen identified genetic relationships between ssdC and genes involved in the assembly of the spore coat. Phenotypic characterization of these mutants revealed that spore shape, and SsdC localization, depend on the coat basement layer proteins SpoVM and SpoIVA, the encasement protein SpoVID and the inner coat protein SafA. Importantly, we found that the ΔssdC mutant produces spores with an abnormal-looking cortex, and abolishing cortex synthesis in the mutant largely suppresses its shape defects. Thus, SsdC appears to play a role in the proper assembly of the spore cortex, through connections to the spore coat. Collectively, our data suggest functional diversification of the MucB / RseB protein domain between diderm and monoderm bacteria and identify SsdC as an important factor in spore shape development.


Assuntos
Proteínas de Bactérias/metabolismo , Esporos Bacterianos/metabolismo , Bacillus subtilis , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Mutação , Domínios Proteicos , Esporos Bacterianos/ultraestrutura
3.
Gastroenterology ; 159(4): 1431-1443.e6, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32574621

RESUMO

BACKGROUND & AIMS: The protease plasmin is an important wound healing factor, but it is not clear how it affects gastrointestinal infection-mediated damage, such as that resulting from Clostridioides difficile. We investigated the role of plasmin in C difficile-associated disease. This bacterium produces a spore form that is required for infection, so we also investigated the effects of plasmin on spores. METHODS: C57BL/6J mice expressing the precursor to plasmin, the zymogen human plasminogen (hPLG), or infused with hPLG were infected with C difficile, and disease progression was monitored. Gut tissues were collected, and cytokine production and tissue damage were analyzed by using proteomic and cytokine arrays. Antibodies that inhibit either hPLG activation or plasmin activity were developed and structurally characterized, and their effects were tested in mice. Spores were isolated from infected patients or mice and visualized using super-resolution microscopy; the functional consequences of hPLG binding to spores were determined. RESULTS: hPLG localized to the toxin-damaged gut, resulting in immune dysregulation with an increased abundance of cytokines (such as interleukin [IL] 1A, IL1B, IL3, IL10, IL12B, MCP1, MP1A, MP1B, GCSF, GMCSF, KC, TIMP-1), tissue degradation, and reduced survival. Administration of antibodies that inhibit plasminogen activation reduced disease severity in mice. C difficile spores bound specifically to hPLG and active plasmin degraded their surface, facilitating rapid germination. CONCLUSIONS: We found that hPLG is recruited to the damaged gut, exacerbating C difficile disease in mice. hPLG binds to C difficile spores, and, upon activation to plasmin, remodels the spore surface, facilitating rapid spore germination. Inhibitors of plasminogen activation might be developed for treatment of C difficile or other infection-mediated gastrointestinal diseases.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Enterocolite Pseudomembranosa/etiologia , Enterocolite Pseudomembranosa/patologia , Plasminogênio/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Humanos , Intestino Delgado , Camundongos , Camundongos Endogâmicos C57BL
4.
PLoS Pathog ; 14(4): e1007004, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29668758

RESUMO

Bacterial spores play an important role in disease initiation, transmission and persistence. In some species, the exosporium forms the outermost structure of the spore and provides the first point of contact between the spore and the environment. The exosporium may also be involved in spore adherence, protection and germination. Clostridium sordellii is a highly lethal, spore forming pathogen that causes soft-tissue infections, enteritis and toxic-shock syndrome. Despite the importance of C. sordellii spores in disease, spore proteins from this bacterium have not been defined or interrogated functionally. In this study, we identified the C. sordellii outer spore proteome and two of the identified proteins, CsA and CsB, were characterised using a genetic and phenotypic approach. Both proteins were essential for the correct formation and positioning of the C. sordellii spore coat and exosporium. The absence of CsA reduced sporulation levels and increased spore sensitivity to heat, sodium hydroxide and hydrochloric acid. By comparison, CsB was required for normal levels of spore adherence to cervical, but not vaginal, cells, with csB mutant spores having increased adherence properties. The establishment of a mouse infection model of the gastrointestinal tract for C. sordellii allowed the role of CsA and CsB to be interrogated in an infected host. Following the oral administration of spores to mice, the wild-type strain efficiently colonized the gastrointestinal tract, with the peak of bacterial numbers occurring at one day post-infection. Colonization was reduced by two logs at four days post-infection. By comparison, mice infected with the csB mutant did not show a reduction in bacterial numbers. We conclude that C. sordellii outer spore proteins are important for the structural and functional integrity of spores. Furthermore, outer spore proteins are required for wild-type levels of colonization during infection, possibly as a result of the role that the proteins play in spore structure and morphology.


Assuntos
Proteínas de Bactérias/metabolismo , Colo do Útero/microbiologia , Infecções por Clostridium/microbiologia , Clostridium sordellii/patogenicidade , Trato Gastrointestinal/microbiologia , Esporos Bacterianos/fisiologia , Vagina/microbiologia , Animais , Proteínas de Bactérias/genética , Células Cultivadas , Colo do Útero/metabolismo , Infecções por Clostridium/metabolismo , Infecções por Clostridium/patologia , Feminino , Trato Gastrointestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Vagina/metabolismo
5.
Infect Immun ; 87(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30530621

RESUMO

Clostridium difficile is a major cause of hospital-acquired antibiotic-associated diarrhea. C. difficile produces two cytotoxins, TcdA and TcdB; both toxins are multidomain proteins that lead to cytotoxicity through the modification and inactivation of small GTPases of the Rho/Rac family. Previous studies have indicated that host glycans are targets for TcdA and TcdB, with interactions thought to be with both α- and ß-linked galactose. In the current study, screening of glycan arrays with different domains of TcdA and TcdB revealed that the binding regions of both toxins interact with a wider range of host glycoconjugates than just terminal α- and ß-linked galactose, including blood groups, Lewis antigens, N-acetylglucosamine, mannose, and glycosaminoglycans. The interactions of TcdA and TcdB with ABO blood group and Lewis antigens were assessed by surface plasmon resonance (SPR). The blood group A antigen was the highest-affinity ligand for both toxins. Free glycans alone or in combination were unable to abolish Vero cell cytotoxicity by TcdB. SPR competition assays indicate that there is more than one glycan binding site on TcdB. Host glycoconjugates are common targets of bacterial toxins, but typically this binding is to a specific structure or related structures. The binding of TcdA and TcdB is to a wide range of host glycans providing a wide range of target cells and tissues in vivo.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Enterotoxinas/metabolismo , Lectinas/metabolismo , Animais , Sobrevivência Celular , Chlorocebus aethiops , Clonagem Molecular , Polissacarídeos , Células Vero
6.
BMC Microbiol ; 19(1): 53, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30832583

RESUMO

BACKGROUND: With the current rise of antibiotic resistance in bacteria, it is important to monitor the efficacy of antimicrobials in clinical use. Paeniclostridium sordellii (previously Clostridium sordellii) is a bacterial pathogen that causes human uterine infection after spontaneous or medically induced abortion, for which mortality rates approach 100%. Prophylactic antibiotics have been recommended for individuals undergoing medically-induced abortion, one of which is doxycycline, a member of the tetracycline antibiotic family. However, tetracycline resistance had not been well characterized in P. sordellii. This study therefore aimed to determine the levels of tetracycline resistance in P. sordellii isolates, and to identify associated loci and their genomic locations. RESULTS: Using a MIC assay, five of 24 P. sordellii isolates were found to be resistant to tetracycline, minocycline, and importantly, doxycycline. Analysis of genome sequence data from 46 isolates found that phenotypically resistant isolates encoded a variant of the Clostridium perfringens tetracycline resistance determinant Tet P. Bioinformatic analysis and comparison of the regions surrounding these determinants found variation in the genomic location of Tet P among P. sordellii isolates. The core genome comparison of the 46 isolates revealed genetic diversity and the absence of dominant genetic types among the isolates. There was no strong association between geographic location of isolation, animal host or Tet P carriage with isolate genetic type. Furthermore, the analysis of the Tet P genotype revealed that Tet P is encoded chromosomally, or on one of two, novel, small plasmids, all consistent with multiple acquisition and recombination events. BLAST analysis of Clostridioides difficile draft genome sequences also identified a Tet P locus, the genomic location of which demonstrated an evolutionary relationship with the P. sordellii locus. CONCLUSIONS: The Tet P determinant is found in variable genomic locations within diverse human and animal isolates of P. sordellii and C. difficile, which suggests that it can undergo horizontal transfer, and may disseminate tetracycline resistance between clostridial species. Doxycycline is a suggested prophylactic treatment for P. sordellii infections, however, a small sub-set of the isolates tested are resistant to this antibiotic. Doxycycline may therefore not be an appropriate prophylactic treatment for P. sordellii infections.


Assuntos
Clostridioides difficile/genética , Clostridium sordellii/genética , Loci Gênicos , Genoma Bacteriano , Resistência a Tetraciclina/genética , Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Clostridium sordellii/efeitos dos fármacos , Doxiciclina/farmacologia , Testes de Sensibilidade Microbiana , Tetraciclina/farmacologia
7.
Plasmid ; 102: 37-45, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30790588

RESUMO

Conjugative transfer is a major contributor to the dissemination of antibiotic resistance and virulence genes in the human and animal pathogen, Clostridium perfringens. The C. perfringens plasmid pCW3 is the archetype of an extensive family of highly related conjugative toxin and antibiotic resistance plasmids found in this bacterium. These plasmids were thought to constitute the only conjugative plasmid family in C. perfringens. Recently, another series of C. perfringens plasmids, the pCP13-like family, have been shown to harbour important toxin genes, including genes that encode the novel binary clostridial enterotoxin, BEC. Based on early bioinformatics analysis this plasmid family was thought to be non-conjugative. Here we demonstrate that pCP13 is in fact conjugative, transfers at high frequency and that the newly defined Pcp conjugation locus encodes putative homologues of a type 4 secretion system (T4SS), one of which, PcpB4, was shown to be essential for transfer. The T4SS of pCP13 also appears to be evolutionarily related to conjugative toxin plasmids from other clostridia-like species, including Paeniclostridium (formerly Clostridium) sordellii, Clostridioides (formerly Clostridium) difficile and Clostridium botulinum. Therefore, it is clear that there are two distinct families of conjugative plasmids in C. perfringens: the pCW3 family and the pCP13 family. This study has significant implications for our understanding of the movement of toxin genes both within C. perfringens, but also potentially to other pathogenic clostridia.


Assuntos
Toxinas Bacterianas/genética , Clostridium perfringens/genética , Conjugação Genética , Plasmídeos/genética , Sequência de Bases , Sequência Conservada/genética , Loci Gênicos , Modelos Genéticos , Mutação/genética , Filogenia
8.
Anaerobe ; 41: 10-17, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27178230

RESUMO

Bacterial pathogens have adopted numerous mechanisms for acquiring iron from host proteins during an infection, including the direct acquisition of ferric iron from heme-associated proteins or from iron-scavenging siderophores. Ferric iron then is transported into the cytosol, where it can be utilized by the bacterial pathogen. Under anaerobic conditions bacteria can also transport ferrous iron using the transmembrane complex FeoAB, but little is known about iron transport systems in anaerobic bacteria such as the pathogenic clostridia. In this study we sought to characterize the iron acquisition process in Clostridium perfringens. Bioinformatic analysis of the Clostridium perfringens strain 13 genome sequence revealed that it has seven potential iron acquisition systems: three siderophore-mediated systems, one ferric citrate uptake system, two heme-associated acquisition systems and one ferrous iron uptake system (FeoAB). The relative level of expression of these systems was determined using quantitative real-time RT-PCR assays that were specific for one gene from each system. Each of these genes was expressed, with the feoAB genes generating the most abundant iron-uptake related transcripts. To further examine the role of this system in the growth of C. perfringens, insertional inactivation was used to isolate a chromosomal feoB mutant. Growth of this mutant in the presence and absence of iron revealed that it had altered growth properties and a markedly reduced total iron and manganese content compared to the wild type; effects that were reversed upon complementation with the wild-type feoB gene. These studies suggest that under anaerobic conditions FeoB is the major protein required for the uptake of iron into the cell and that it may play an important role in the pathogenesis of C. perfringens infections.


Assuntos
Proteínas de Bactérias/genética , Clostridium perfringens/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/biossíntese , Clostridium perfringens/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Transcrição Gênica
9.
BMC Genomics ; 16: 392, 2015 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-25981746

RESUMO

BACKGROUND: Clostridium sordellii can cause severe infections in animals and humans, the latter associated with trauma, toxic shock and often-fatal gynaecological infections. Strains can produce two large clostridial cytotoxins (LCCs), TcsL and TcsH, related to those produced by Clostridium difficile, Clostridium novyi and Clostridium perfringens, but the genetic basis of toxin production remains uncharacterised. RESULTS: Phylogenetic analysis of the genome sequences of 44 strains isolated from human and animal infections in the UK, US and Australia placed the species into four clades. Although all strains originated from animal or clinical disease, only 5 strains contained LCC genes: 4 strains contain tcsL alone and one strain contains tcsL and tcsH. Four toxin-positive strains were found within one clade. Where present, tcsL and tcsH were localised in a pathogenicity locus, similar to but distinct from that present in C. difficile. In contrast to C. difficile, where the LCCs are chromosomally localised, the C. sordellii tcsL and tcsH genes are localised on plasmids. Our data suggest gain and loss of entire toxigenic plasmids in addition to horizontal transfer of the pathogenicity locus. A high quality, annotated sequence of ATCC9714 reveals many putative virulence factors including neuraminidase, phospholipase C and the cholesterol-dependent cytolysin sordellilysin that are highly conserved between all strains studied. CONCLUSIONS: Genome analysis of C. sordellii reveals that the LCCs, the major virulence factors, are localised on plasmids. Many strains do not contain the LCC genes; it is probable that in several of these cases the plasmid has been lost upon laboratory subculture. Our data are consistent with LCCs being the primary virulence factors in the majority of infections, but LCC-negative strains may precipitate certain categories of infection. A high quality genome sequence reveals putative virulence factors whose role in virulence can be investigated.


Assuntos
Toxinas Bacterianas/genética , Clostridium sordellii/genética , Clostridium sordellii/patogenicidade , Genoma Bacteriano/genética , Plasmídeos/metabolismo , Fatores de Virulência/genética , Mapeamento Cromossômico , Clostridium sordellii/classificação , Transferência Genética Horizontal , Loci Gênicos/genética , Neuraminidase/genética , Filogenia , Plasmídeos/genética , Análise de Sequência de DNA , Fosfolipases Tipo C/genética
10.
Avian Dis ; 59(3): 447-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26478166

RESUMO

Three outbreaks of necrotic enteritis-like disease associated with Clostridium sordelii were diagnosed in commercial broiler chicken flocks with 18,000 to 31,000 birds between 18 and 26 days old. Clinical signs in the affected flocks included high mortality up to 2% a day, depression, and diarrhea. The main gross changes included segmental dilation of the small intestine with watery contents, gas, mucoid exudate, and roughened and uneven mucosa, occasionally covered with a pseudomembrane. Microscopic lesions in the small intestine were characterized by extensive areas of coagulative necrosis of the villi, fibrinous exudate in the lumen, and high numbers of large, Gram-positive rods, occasionally containing subterminal spores, seen in the necrotic tissue and lumen. These rods were identified as C. sordellii by immunohistochemistry. Clostridium sordellii was isolated in an almost pure culture from the intestine of affected birds. A retrospective study of commercial broiler chicken and turkey submissions to the California Animal Health and Food Safety Laboratory System revealed that C. sordellii had been isolated from intestinal lesions in outbreaks of necrotic enteritis-like disease in 8 of 39 cases, 5 times together with Clostridium perfringens and 3 times alone. The latter three cases are reported here.


Assuntos
Galinhas , Infecções por Clostridium/veterinária , Clostridium sordellii/isolamento & purificação , Enterite/veterinária , Doenças das Aves Domésticas/microbiologia , Animais , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Surtos de Doenças/veterinária , Enterite/microbiologia , Enterite/patologia , Doenças das Aves Domésticas/patologia
11.
J Infect Dis ; 210(3): 483-92, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24550443

RESUMO

Gas gangrene is a potentially fatal disease that is primarily caused by the ubiquitous, anaerobic bacteria Clostridium perfringens and Clostridium septicum. Treatment is limited to antibiotic therapy, debridement of the infected tissue, and, in severe cases, amputation. The need for new treatment approaches is compelling. Opioid-based analgesics such as buprenorphine and morphine also have immunomodulatory properties, usually leading to faster disease progression. However, here we show that mice pretreated with buprenorphine and morphine do not die from clostridial myonecrosis. Treatment with buprenorphine after the onset of infection also arrested disease development. Protection against myonecrotic disease was specific to C. perfringens-mediated myonecrosis; buprenorphine did not protect against disease caused by C. septicum infection even though infections due to both species are very similar. These data provide the first evidence of a protective role for opioids during infection and suggest that new therapeutic strategies may be possible for the treatment of C. perfringens-mediated myonecrosis.


Assuntos
Analgésicos Opioides/uso terapêutico , Buprenorfina/uso terapêutico , Clostridium perfringens , Gangrena Gasosa/tratamento farmacológico , Morfina/uso terapêutico , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Naltrexona/uso terapêutico
12.
Int J Med Microbiol ; 304(8): 1147-59, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25190355

RESUMO

The clostridia cause many human and animal diseases, resulting in significant morbidity and mortality. Host damage results from the action of potent exotoxins, an important group of which is the large clostridial toxins (LCTs) produced by Clostridium difficile, Clostridium sordellii, Clostridium perfringens and Clostridium novyi. Knowledge of the structure and function of these toxins has been attained, however, apart from C. difficile, the regulatory pathways that control LCT production remain largely unknown. Here we show that LCT production in C. sordellii and C. perfringens is temporally regulated and repressed by glucose in a similar manner to C. difficile. Furthermore, we show that the TpeL-encoding gene of C. perfringens is located in an uncharacterized Pathogenicity Locus (PaLoc), along with accessory genes predicted to encode a bacteriophage holin-type protein and a TcdR-family alternative sigma factor, TpeR. Inactivation of tpeR demonstrated that TpeR is critical for C. perfringens TpeL production, in a similar manner to C. difficile TcdR and C. sordellii TcsR, but cross-complementation showed that TpeR is not functionally interchangeable with TcdR or TcsR. Although conserved mechanisms are employed by the clostridia to control LCT production there are important functional differences that distinguish members of the TcdR-family of clostridial alternative sigma factors.


Assuntos
Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Clostridium perfringens/genética , Clostridium sordellii/genética , Regulação Bacteriana da Expressão Gênica , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridium perfringens/metabolismo , Clostridium sordellii/metabolismo , Análise por Conglomerados , Ordem dos Genes , Teste de Complementação Genética , Glucose/metabolismo , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
13.
Appl Environ Microbiol ; 80(12): 3597-3603, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24682304

RESUMO

TnpX is a site-specific recombinase responsible for the excision and insertion of the transposons Tn4451 and Tn4453 in Clostridium perfringens and Clostridium difficile, respectively. Here, we exploit phenotypic features of TnpX to facilitate genetic mutagenesis and complementation studies. Genetic manipulation of bacteria often relies on the use of antibiotic resistance genes; however, a limited number are available for use in the clostridia. The ability of TnpX to recognize and excise specific DNA fragments was exploited here as the basis of an antibiotic resistance marker recycling system, specifically to remove antibiotic resistance genes from plasmids in Escherichia coli and from marked chromosomal C. perfringens mutants. This methodology enabled the construction of a C. perfringens plc virR double mutant by allowing the removal and subsequent reuse of the same resistance gene to construct a second mutation. Genetic complementation can be challenging when the gene of interest encodes a product toxic to E. coli. We show that TnpX represses expression from its own promoter, PattCI, which can be exploited to facilitate the cloning of recalcitrant genes in E. coli for subsequent expression in the heterologous host C. perfringens. Importantly, this technology expands the repertoire of tools available for the genetic manipulation of the clostridia.


Assuntos
Proteínas de Bactérias/metabolismo , Clonagem Molecular/métodos , Clostridium perfringens/genética , DNA Bacteriano/genética , Escherichia coli/genética , Genoma Bacteriano , Recombinases/metabolismo , Proteínas de Bactérias/genética , Clostridium perfringens/enzimologia , DNA Nucleotidiltransferases , Escherichia coli/metabolismo , Teste de Complementação Genética , Recombinases/genética , Recombinação Genética
14.
Anaerobe ; 30: 85-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25230331

RESUMO

We compared the identification of Clostridium species using mass spectrometry by two different Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) platforms (Bruker MS and Vitek MS) against 16S rRNA sequencing as the reference standard. We then examined the impact of different sample preparations and (on one of those platforms) age of bacterial colonial growth on the performance of the MALDI-TOF MS systems. We identified 10 different species amongst the 52 isolates by 16S rRNA sequencing, with Clostridium perfringens the most prevalent (n=30). Spectrometric analysis using Vitek MS correctly speciated 47/52 (90.4%) isolates and was not affected by the sample preparation used. Performance of the Bruker MS was dependent on sample preparation with correct speciation obtained for 36 of 52 (69.2%) isolates tested using the Direct Transfer [DT] protocol, but all 52 (100%) isolates were correctly speciated using either an Extended Direct Transfer [EDT] or a Full Formic Extraction [EX] protocol. We then examined the effect of bacterial colonial growth age on the performance of Bruker MS and found substantial agreement in speciation using DT (Kappa=0.62, 95% CI: 0.46-0.75), almost perfect agreement for EDT (Kappa=0.94, 95% CI: 0.86-1.00) and exact agreement for EX (Kappa=1.00) between different days.


Assuntos
Técnicas Bacteriológicas/métodos , Infecções por Clostridium/microbiologia , Clostridium/classificação , Clostridium/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bacteriemia/diagnóstico , Bacteriemia/microbiologia , Clostridium/química , Infecções por Clostridium/diagnóstico , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Humanos , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Padrões de Referência , Análise de Sequência de DNA , Manejo de Espécimes/métodos
15.
Toxins (Basel) ; 14(2)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35202151

RESUMO

Protein secretion is generally mediated by a series of distinct pathways in bacteria. Recently, evidence of a novel bacterial secretion pathway involving a bacteriophage-related protein has emerged. TcdE, a holin-like protein encoded by toxigenic isolates of Clostridioides difficile, mediates the release of the large clostridial glucosylating toxins (LCGTs), TcdA and TcdB, and TpeL from C. perfringens uses another holin-like protein, TpeE, for its secretion; however, it is not yet known if TcdE or TpeE secretion is specific to these proteins. It is also unknown if other members of the LCGT-producing clostridia, including Paeniclostridium sordellii (previously Clostridium sordellii), use a similar toxin-release mechanism. Here, we confirm that each of the LCGT-producing clostridia encode functional holin-like proteins in close proximity to the toxin genes. To characterise the respective roles of these holin-like proteins in the release of the LCGTs, P. sordellii and its lethal toxin, TcsL, were used as a model. Construction and analysis of mutants of the P. sordellii tcsE (holin-like) gene demonstrated that TcsE plays a significant role in TcsL release. Proteomic analysis of the secretome from the tcsE mutant confirmed that TcsE is required for efficient TcsL secretion. Unexpectedly, comparative sample analysis showed that TcsL was the only protein significantly altered in its release, suggesting that this holin-like protein has specifically evolved to function in the release of this important virulence factor. This specificity has, to our knowledge, not been previously shown and suggests that this protein may function as part of a specific mechanism for the release of all LCGTs.


Assuntos
Toxinas Bacterianas/metabolismo , Clostridium sordellii/metabolismo , Animais , Toxinas Bacterianas/genética , Chlorocebus aethiops , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Clostridium sordellii/genética , Células Vero
16.
Sci Immunol ; 7(71): eabm1803, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35594341

RESUMO

Clostridium species are a group of Gram-positive bacteria that cause diseases in humans, such as food poisoning, botulism, and tetanus. Here, we analyzed 10 different Clostridium species and identified that Clostridium septicum, a pathogen that causes sepsis and gas gangrene, activates the mammalian cytosolic inflammasome complex in mice and humans. Mechanistically, we demonstrate that α-toxin secreted by C. septicum binds to glycosylphosphatidylinositol (GPI)-anchored proteins on the host plasma membrane, oligomerizing and forming a membrane pore that is permissive to efflux of magnesium and potassium ions. Efflux of these cytosolic ions triggers the activation of the innate immune sensor NLRP3, inducing activation of caspase-1 and gasdermin D, secretion of the proinflammatory cytokines interleukin-1ß and interleukin-18, pyroptosis, and plasma membrane rupture via ninjurin-1. Furthermore, α-toxin of C. septicum induces rapid inflammasome-mediated lethality in mice and pharmacological inhibition of the NLRP3 inflammasome using MCC950 prevents C. septicum-induced lethality. Overall, our results reveal that cytosolic innate sensing of α-toxin is central to the recognition of C. septicum infection and that therapeutic blockade of the inflammasome pathway may prevent sepsis and death caused by toxin-producing pathogens.


Assuntos
Toxinas Bacterianas , Proteínas Ligadas por GPI , Inflamassomos , Animais , Toxinas Bacterianas/metabolismo , Clostridium septicum/química , Proteínas Ligadas por GPI/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Inflamassomos/metabolismo , Mamíferos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sepse
17.
Infect Immun ; 79(3): 1025-32, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21199912

RESUMO

Clostridium sordellii is an important pathogen of humans and animals, causing a range of diseases, including myonecrosis, sepsis, and shock. Although relatively rare in humans, the incidence of disease is increasing, and it is associated with high mortality rates, approaching 70%. Currently, very little is known about the pathogenesis of C. sordellii infections or disease. Previous work suggested that the lethal large clostridial glucosylating toxin TcsL is the major virulence factor, but a lack of genetic tools has hindered our ability to conclusively assign a role for TcsL or, indeed, any of the other putative virulence factors produced by this organism. In this study, we have developed methods for the introduction of plasmids into C. sordellii using RP4-mediated conjugation from Escherichia coli and have successfully used these techniques to insertionally inactivate the tcsL gene in the reference strain ATCC 9714, using targetron technology. Virulence testing revealed that the production of TcsL is essential for the development of lethal infections by C. sordellii ATCC 9714 and also contributes significantly to edema seen during uterine infection. This study represents the first definitive identification of a virulence factor in C. sordellii and opens the way for in-depth studies of this important human pathogen at the molecular level.


Assuntos
Toxinas Bacterianas/genética , Clostridium sordellii/genética , Fatores de Virulência/genética , Animais , Southern Blotting , Western Blotting , Chlorocebus aethiops , Clostridium sordellii/patogenicidade , Genes Bacterianos/genética , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase , Células Vero , Virulência
18.
Dev Cell ; 56(1): 36-51.e5, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33383000

RESUMO

Asymmetric division, a hallmark of endospore development, generates two cells, a larger mother cell and a smaller forespore. Approximately 75% of the forespore chromosome must be translocated across the division septum into the forespore by the DNA translocase SpoIIIE. Asymmetric division also triggers cell-specific transcription, which initiates septal peptidoglycan remodeling involving synthetic and hydrolytic enzymes. How these processes are coordinated has remained a mystery. Using Bacillus subtilis, we identified factors that revealed the link between chromosome translocation and peptidoglycan remodeling. In cells lacking these factors, the asymmetric septum retracts, resulting in forespore cytoplasmic leakage and loss of DNA translocation. Importantly, these phenotypes depend on septal peptidoglycan hydrolysis. Our data support a model in which SpoIIIE is anchored at the edge of a septal pore, stabilized by newly synthesized peptidoglycan and protein-protein interactions across the septum. Together, these factors ensure coordination between chromosome translocation and septal peptidoglycan remodeling to maintain spore development.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Segregação de Cromossomos , Cromossomos/metabolismo , Peptidoglicano/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Parede Celular/enzimologia , Cromossomos/genética , Microscopia Eletrônica de Transmissão , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Peptidoglicano/genética , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Ligação Proteica , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Esporos Bacterianos/ultraestrutura
19.
Elife ; 102021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34579805

RESUMO

Many software solutions are available for proteomics and glycomics studies, but none are ideal for the structural analysis of peptidoglycan (PG), the essential and major component of bacterial cell envelopes. It icomprises glycan chains and peptide stems, both containing unusual amino acids and sugars. This has forced the field to rely on manual analysis approaches, which are time-consuming, labour-intensive, and prone to error. The lack of automated tools has hampered the ability to perform high-throughput analyses and prevented the adoption of a standard methodology. Here, we describe a novel tool called PGFinder for the analysis of PG structure and demonstrate that it represents a powerful tool to quantify PG fragments and discover novel structural features. Our analysis workflow, which relies on open-access tools, is a breakthrough towards a consistent and reproducible analysis of bacterial PGs. It represents a significant advance towards peptidoglycomics as a full-fledged discipline.


Assuntos
Bactérias/química , Peptidoglicano/química , Configuração de Carboidratos , Conjuntos de Dados como Assunto , Glicômica , Espectrometria de Massas/métodos , Peptidoglicano/biossíntese , Reprodutibilidade dos Testes , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA