Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37512306

RESUMO

In the present work, we have used classical molecular dynamics and quantum mechanical density functional theory modeling to investigate the grain size-dependent thermal expansion coefficient (CTE) of nanocrystalline Cu. We find that the CTE increases by up to 20% with a gradually decreasing grain size. This behavior emerges as a result of the increased population of occupied anti-bonding states and bond order variation in the grain boundary regions, which contribute to the reduced resistance against thermally-induced bond stretching and dictate the thermal expansion behavior in the small grain size limit. As a part of the present work, we have established a procedure to produce ab initio thermal expansion maps that can be used for the prediction of the grain size-dependent CTE. This can serve as a modeling tool, e.g., to explore the impact of grain boundary impurity segregation on the CTE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA