Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(27): 13394-13403, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213542

RESUMO

Increased glycolysis in the lung vasculature has been connected to the development of pulmonary hypertension (PH). We therefore investigated whether glycolytic regulator 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB3)-mediated endothelial glycolysis plays a critical role in the development of PH. Heterozygous global deficiency of Pfkfb3 protected mice from developing hypoxia-induced PH, and administration of the PFKFB3 inhibitor 3PO almost completely prevented PH in rats treated with Sugen 5416/hypoxia, indicating a causative role of PFKFB3 in the development of PH. Immunostaining of lung sections and Western blot with isolated lung endothelial cells showed a dramatic increase in PFKFB3 expression and activity in pulmonary endothelial cells of rodents and humans with PH. We generated mice that were constitutively or inducibly deficient in endothelial Pfkfb3 and found that these mice were incapable of developing PH or showed slowed PH progression. Compared with control mice, endothelial Pfkfb3-knockout mice exhibited less severity of vascular smooth muscle cell proliferation, endothelial inflammation, and leukocyte recruitment in the lungs. In the absence of PFKFB3, lung endothelial cells from rodents and humans with PH produced lower levels of growth factors (such as PDGFB and FGF2) and proinflammatory factors (such as CXCL12 and IL1ß). This is mechanistically linked to decreased levels of HIF2A in lung ECs following PFKFB3 knockdown. Taken together, these results suggest that targeting PFKFB3 is a promising strategy for the treatment of PH.


Assuntos
Glicólise , Hipertensão Pulmonar/etiologia , Pulmão/metabolismo , Fosfofrutoquinase-2/fisiologia , Animais , Modelos Animais de Doenças , Endotélio/metabolismo , Técnicas de Silenciamento de Genes , Glicólise/fisiologia , Humanos , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfofrutoquinase-2/deficiência , Fosfofrutoquinase-2/metabolismo , Ratos , Ratos Sprague-Dawley
2.
Am J Physiol Cell Physiol ; 321(6): C1010-C1027, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669509

RESUMO

Piezo is a mechanosensitive cation channel responsible for stretch-mediated Ca2+ and Na+ influx in multiple types of cells. Little is known about the functional role of Piezo1 in the lung vasculature and its potential pathogenic role in pulmonary arterial hypertension (PAH). Pulmonary arterial endothelial cells (PAECs) are constantly under mechanic stretch and shear stress that are sufficient to activate Piezo channels. Here, we report that Piezo1 is significantly upregulated in PAECs from patients with idiopathic PAH and animals with experimental pulmonary hypertension (PH) compared with normal controls. Membrane stretch by decreasing extracellular osmotic pressure or by cyclic stretch (18% CS) increases Ca2+-dependent phosphorylation (p) of AKT and ERK, and subsequently upregulates expression of Notch ligands, Jagged1/2 (Jag-1 and Jag-2), and Delta like-4 (DLL4) in PAECs. siRNA-mediated downregulation of Piezo1 significantly inhibited the stretch-mediated pAKT increase and Jag-1 upregulation, whereas downregulation of AKT by siRNA markedly attenuated the stretch-mediated Jag-1 upregulation in human PAECs. Furthermore, the mRNA and protein expression level of Piezo1 in the isolated pulmonary artery, which mainly contains pulmonary arterial smooth muscle cells (PASMCs), from animals with severe PH was also significantly higher than that from control animals. Intraperitoneal injection of a Piezo1 channel blocker, GsMTx4, ameliorated experimental PH in mice. Taken together, our study suggests that membrane stretch-mediated Ca2+ influx through Piezo1 is an important trigger for pAKT-mediated upregulation of Jag-1 in PAECs. Upregulation of the mechanosensitive channel Piezo1 and the resultant increase in the Notch ligands (Jag-1/2 and DLL4) in PAECs may play a critical pathogenic role in the development of pulmonary vascular remodeling in PAH and PH.


Assuntos
Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Canais Iônicos/biossíntese , Mecanotransdução Celular/fisiologia , Artéria Pulmonar/metabolismo , Regulação para Cima/fisiologia , Adulto , Idoso , Animais , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Hipertensão Pulmonar/patologia , Indóis/farmacologia , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
3.
Am J Physiol Cell Physiol ; 318(5): C954-C968, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186932

RESUMO

The increase in cytosolic Ca2+ concentration ([Ca2+]cyt) and upregulation of calcium-sensing receptor (CaSR) and stromal interaction molecule 2 (STIM2) along with inhibition of voltage-gated K+ (KV) channels in pulmonary arterial smooth muscle cells (PASMC) have been implicated in the development of pulmonary arterial hypertension; however, the precise upstream mechanisms remain elusive. Activation of CaSR, a G protein-coupled receptor (GPCR), results in Ca2+ release from the endoplasmic/sarcoplasmic reticulum (ER/SR) and Ca2+ influx through receptor-operated and store-operated Ca2+ channels (SOC). Upon Ca2+ depletion from the SR, STIM forms clusters to mediate store-operated Ca2+ entry. Activity of KV channels, like KCNA5/KV1.5 and KCNA2/KV1.2, contributes to regulating membrane potential, and inhibition of KV channels results in membrane depolarization that increases [Ca2+]cyt by opening voltage-dependent Ca2+ channels. In this study, we show that activation of Notch by its ligand Jag-1 promotes the clustering of STIM2, and clustered STIM2 subsequently enhances the CaSR-induced Ca2+ influx through SOC channels. Extracellular Ca2+-mediated activation of CaSR increases [Ca2+]cyt in CASR-transfected HEK293 cells. Treatment of CASR-transfected cells with Jag-1 further enhances CaSR-mediated increase in [Ca2+]cyt. Moreover, CaSR-mediated increase in [Ca2+]cyt was significantly augmented in cells co-transfected with CASR and STIM2. CaSR activation results in STIM2 clustering in CASR/STIM2-cotransfected cells. Notch activation also induces significant clustering of STIM2. Furthermore, activation of Notch attenuates whole cell K+ currents in KCNA5- and KCNA2-transfected cells. Together, these results suggest that Notch activation enhances CaSR-mediated increases in [Ca2+]cyt by enhancing store-operated Ca2+ entry and inhibits KCNA5/KV1.5 and KCNA2/KV1.2, ultimately leading to voltage-activated Ca2+ entry.


Assuntos
Canal de Potássio Kv1.2/genética , Canal de Potássio Kv1.5/genética , Hipertensão Arterial Pulmonar/genética , Receptores de Detecção de Cálcio/genética , Molécula 2 de Interação Estromal/genética , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/genética , Sinalização do Cálcio/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Estrenos/farmacologia , Células HEK293 , Humanos , Indóis/farmacologia , Proteína Jagged-1/genética , Potenciais da Membrana/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Pirrolidinonas/farmacologia , Receptores de Detecção de Cálcio/efeitos dos fármacos , Receptores Notch/genética , Análise de Célula Única
4.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L10-L26, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553627

RESUMO

Downregulated expression of K+ channels and decreased K+ currents in pulmonary artery smooth muscle cells (PASMC) have been implicated in the development of sustained pulmonary vasoconstriction and vascular remodeling in patients with idiopathic pulmonary arterial hypertension (IPAH). However, it is unclear exactly how K+ channels are downregulated in IPAH-PASMC. MicroRNAs (miRNAs) are small non-coding RNAs that are capable of posttranscriptionally regulating gene expression by binding to the 3'-untranslated regions of their targeted mRNAs. Here, we report that specific miRNAs are responsible for the decreased K+ channel expression and function in IPAH-PASMC. We identified 3 miRNAs (miR-29b, miR-138, and miR-222) that were highly expressed in IPAH-PASMC in comparison to normal PASMC (>2.5-fold difference). Selectively upregulated miRNAs are correlated with the decreased expression and attenuated activity of K+ channels. Overexpression of miR-29b, miR-138, or miR-222 in normal PASMC significantly decreased whole cell K+ currents and downregulated voltage-gated K+ channel 1.5 (KV1.5/KCNA5) in normal PASMC. Inhibition of miR-29b in IPAH-PASMC completely recovered K+ channel function and KV1.5 expression, while miR-138 and miR-222 had a partial or no effect. Luciferase assays further revealed that KV1.5 is a direct target of miR-29b. Additionally, overexpression of miR-29b in normal PASMC decreased large-conductance Ca2+-activated K+ (BKCa) channel currents and downregulated BKCa channel ß1 subunit (BKCaß1 or KCNMB1) expression, while inhibition of miR-29b in IPAH-PASMC increased BKCa channel activity and BKCaß1 levels. These data indicate upregulated miR-29b contributes at least partially to the attenuated function and expression of KV and BKCa channels in PASMC from patients with IPAH.


Assuntos
Regulação para Baixo/genética , Hipertensão Pulmonar Primária Familiar/genética , MicroRNAs/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Adolescente , Adulto , Células Cultivadas , Hipertensão Pulmonar Primária Familiar/metabolismo , Feminino , Humanos , Masculino , Potenciais da Membrana/genética , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , RNA Mensageiro/genética , Regulação para Cima/genética , Vasoconstrição/genética , Adulto Jovem
5.
Am J Physiol Cell Physiol ; 317(6): C1093-C1106, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461344

RESUMO

This study explored the mechanism by which Ca2+-activated Cl- channels (CaCCs) encoded by the Tmem16a gene are regulated by calmodulin-dependent protein kinase II (CaMKII) and protein phosphatases 1 (PP1) and 2A (PP2A). Ca2+-activated Cl- currents (IClCa) were recorded from HEK-293 cells expressing mouse TMEM16A. IClCa were evoked using a pipette solution in which free Ca2+ concentration was clamped to 500 nM, in the presence (5 mM) or absence of ATP. With 5 mM ATP, IClCa decayed to <50% of the initial current magnitude within 10 min after seal rupture. IClCa rundown seen with ATP-containing pipette solution was greatly diminished by omitting ATP. IClCa recorded after 20 min of cell dialysis with 0 ATP were more than twofold larger than those recorded with 5 mM ATP. Intracellular application of autocamtide-2-related inhibitory peptide (5 µM) or KN-93 (10 µM), two specific CaMKII inhibitors, produced a similar attenuation of TMEM16A rundown. In contrast, internal application of okadaic acid (30 nM) or cantharidin (100 nM), two nonselective PP1 and PP2A blockers, promoted the rundown of TMEM16A in cells dialyzed with 0 ATP. Mutating serine 528 of TMEM16A to an alanine led to a similar inhibition of TMEM16A rundown to that exerted by either one of the two CaMKII inhibitors tested, which was not observed for three putative CaMKII consensus sites for phosphorylation (T273, T622, and S730). Our results suggest that TMEM16A-mediated CaCCs are regulated by CaMKII and PP1/PP2A. Our data also suggest that serine 528 of TMEM16A is an important contributor to the regulation of IClCa by CaMKII.


Assuntos
Anoctamina-1/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Regulação da Expressão Gênica , Proteínas de Neoplasias/genética , Proteína Fosfatase 1/genética , Proteína Fosfatase 2/genética , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Animais , Anoctamina-1/metabolismo , Benzilaminas/farmacologia , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cantaridina/farmacologia , Cloretos/metabolismo , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Células HEK293 , Humanos , Transporte de Íons/efeitos dos fármacos , Camundongos , Proteínas de Neoplasias/metabolismo , Ácido Okadáico/farmacologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 1/antagonistas & inibidores , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Sulfonamidas/farmacologia
6.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L216-L228, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358436

RESUMO

The tumor-suppressive role of p53, a transcription factor that regulates the expression of many genes, has been linked to cell cycle arrest, apoptosis, and senescence. The noncanonical function or the pathogenic role of p53 has more recently been implicated in pulmonary vascular disease. We previously reported that rapid nuclear accumulation of hypoxia-inducible factor (HIF)-1α in pulmonary arterial smooth muscle cells (PASMCs) upregulates transient receptor potential channels and enhances Ca2+ entry to increase cytosolic Ca2+ concentration ([Ca2+]cyt). Also, we observed differences in HIF-1α/2α expression in PASMCs and pulmonary arterial endothelial cells (PAECs). Here we report that p53 is increased in PAECs, but decreased in PASMCs, isolated from mice with hypoxia-induced pulmonary hypertension (PH) and rats with monocrotaline (MCT)-induced PH (MCT-PH). The increased p53 in PAECs from rats with MCT-PH is associated with an increased ratio of Bax/Bcl-2, while the decreased p53 in PASMCs is associated with an increased HIF-1α. Furthermore, p53 is downregulated in PASMCs isolated from patients with idiopathic pulmonary arterial hypertension compared with PASMCs from normal subjects. Overexpression of p53 in normal PASMCs inhibits store-operated Ca2+ entry (SOCE) induced by passive depletion of intracellularly stored Ca2+ in the sarcoplasmic reticulum, while downregulation of p53 enhances SOCE. These data indicate that differentially regulated expression of p53 and HIF-1α/2α in PASMCs and PAECs and the cross talk between p53 and HIF-1α/2α in PASMCs and PAECs may play an important role in the development of PH via, at least in part, induction of PAEC apoptosis and PASMC proliferation.


Assuntos
Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cálcio/metabolismo , Proliferação de Células , Células Endoteliais/patologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipóxia/complicações , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Artéria Pulmonar/patologia , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia , Proteína X Associada a bcl-2/metabolismo
8.
Am J Physiol Cell Physiol ; 314(4): C504-C517, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351410

RESUMO

Ca2+ signaling, particularly the mechanism via store-operated Ca2+ entry (SOCE) and receptor-operated Ca2+ entry (ROCE), plays a critical role in the development of acute hypoxia-induced pulmonary vasoconstriction and chronic hypoxia-induced pulmonary hypertension. This study aimed to test the hypothesis that chronic hypoxia differentially regulates the expression of proteins that mediate SOCE and ROCE [stromal interacting molecule (STIM), Orai, and canonical transient receptor potential channel TRPC6] in pulmonary (PASMC) and coronary (CASMC) artery smooth muscle cells. The resting cytosolic [Ca2+] ([Ca2+]cyt) and the stored [Ca2+] in the sarcoplasmic reticulum were not different in CASMC and PASMC. Seahorse measurement showed a similar level of mitochondrial bioenergetics (basal respiration and ATP production) between CASMC and PASMC. Glycolysis was significantly higher in PASMC than in CASMC. The amplitudes of cyclopiazonic acid-induced SOCE and OAG-induced ROCE in CASMC are slightly, but significantly, greater than in PASMC. The frequency and the area under the curve of Ca2+ oscillations induced by ATP and histamine were also larger in CASMC than in PASMC. Na+/Ca2+ exchanger-mediated increases in [Ca2+]cyt did not differ significantly between CASMC and PASMC. The basal protein expression levels of STIM1/2, Orai1/2, and TRPC6 were higher in CASMC than in PASMC, but hypoxia (3% O2 for 72 h) significantly upregulated protein expression levels of STIM1/STIM2, Orai1/Orai2, and TRPC6 and increased the resting [Ca2+]cyt only in PASMC, but not in CASMC. The different response of essential components of store-operated and receptor-operated Ca2+ channels to hypoxia is a unique intrinsic property of PASMC, which is likely one of the important explanations why hypoxia causes pulmonary vasoconstriction and induces pulmonary vascular remodeling, but causes coronary vasodilation.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Canais de Cálcio/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Hipóxia Celular , Células Cultivadas , Vasos Coronários/metabolismo , Metabolismo Energético , Humanos , Cinética , Potenciais da Membrana , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Artéria Pulmonar/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Canal de Cátion TRPC6/metabolismo , Remodelação Vascular , Vasoconstrição , Vasodilatação
9.
Am J Physiol Lung Cell Mol Physiol ; 314(2): L256-L275, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29074488

RESUMO

Pulmonary vascular remodeling characterized by concentric wall thickening and intraluminal obliteration is a major contributor to the elevated pulmonary vascular resistance in patients with idiopathic pulmonary arterial hypertension (IPAH). Here we report that increased hypoxia-inducible factor 2α (HIF-2α) in lung vascular endothelial cells (LVECs) under normoxic conditions is involved in the development of pulmonary hypertension (PH) by inducing endothelial-to-mesenchymal transition (EndMT), which subsequently results in vascular remodeling and occlusive lesions. We observed significant EndMT and markedly increased expression of SNAI, an inducer of EndMT, in LVECs from patients with IPAH and animals with experimental PH compared with normal controls. LVECs isolated from IPAH patients had a higher level of HIF-2α than that from normal subjects, whereas HIF-1α was upregulated in pulmonary arterial smooth muscle cells (PASMCs) from IPAH patients. The increased HIF-2α level, due to downregulated prolyl hydroxylase domain protein 2 (PHD2), a prolyl hydroxylase that promotes HIF-2α degradation, was involved in enhanced EndMT and upregulated SNAI1/2 in LVECs from patients with IPAH. Moreover, knockdown of HIF-2α (but not HIF-1α) with siRNA decreases both SNAI1 and SNAI2 expression in IPAH-LVECs. Mice with endothelial cell (EC)-specific knockout (KO) of the PHD2 gene, egln1 (egln1EC-/-), developed severe PH under normoxic conditions, whereas Snai1/2 and EndMT were increased in LVECs of egln1EC-/- mice. EC-specific KO of the HIF-2α gene, hif2a, prevented mice from developing hypoxia-induced PH, whereas EC-specific deletion of the HIF-1α gene, hif1a, or smooth muscle cell (SMC)-specific deletion of hif2a, negligibly affected the development of PH. Also, exposure to hypoxia for 48-72 h increased protein level of HIF-1α in normal human PASMCs and HIF-2α in normal human LVECs. These data indicate that increased HIF-2α in LVECs plays a pathogenic role in the development of severe PH by upregulating SNAI1/2, inducing EndMT, and causing obliterative pulmonary vascular lesions and vascular remodeling.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal , Hipertensão Pulmonar/etiologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/fisiologia , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Remodelação Vascular
10.
Am J Physiol Lung Cell Mol Physiol ; 312(3): L309-L325, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27979859

RESUMO

Capsaicin is an active component of chili pepper and a pain relief drug. Capsaicin can activate transient receptor potential vanilloid 1 (TRPV1) channels to increase cytosolic Ca2+ concentration ([Ca2+]cyt). A rise in [Ca2+]cyt in pulmonary artery smooth muscle cells (PASMCs) is an important stimulus for pulmonary vasoconstriction and vascular remodeling. In this study, we observed that a capsaicin-induced increase in [Ca2+]cyt was significantly enhanced in PASMCs from patients with idiopathic pulmonary arterial hypertension (IPAH) compared with normal PASMCs from healthy donors. In addition, the protein expression level of TRPV1 in IPAH PASMCs was greater than in normal PASMCs. Increasing the temperature from 23 to 43°C, or decreasing the extracellular pH value from 7.4 to 5.9 enhanced capsaicin-induced increases in [Ca2+]cyt; the acidity (pH 5.9)- and heat (43°C)-mediated enhancement of capsaicin-induced [Ca2+]cyt increases were greater in IPAH PASMCs than in normal PASMCs. Decreasing the extracellular osmotic pressure from 310 to 200 mOsmol/l also increased [Ca2+]cyt, and the hypo-osmolarity-induced rise in [Ca2+]cyt was greater in IPAH PASMCs than in healthy PASMCs. Inhibition of TRPV1 (with 5'-IRTX or capsazepine) or knockdown of TRPV1 (with short hairpin RNA) attenuated capsaicin-, acidity-, and osmotic stretch-mediated [Ca2+]cyt increases in IPAH PASMCs. Capsaicin induced phosphorylation of CREB by raising [Ca2+]cyt, and capsaicin-induced CREB phosphorylation were significantly enhanced in IPAH PASMCs compared with normal PASMCs. Pharmacological inhibition and knockdown of TRPV1 attenuated IPAH PASMC proliferation. Taken together, the capsaicin-mediated [Ca2+]cyt increase due to upregulated TRPV1 may be a critical pathogenic mechanism that contributes to augmented Ca2+ influx and excessive PASMC proliferation in patients with IPAH.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Capsaicina/farmacologia , Hipertensão Pulmonar Primária Familiar/patologia , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/patologia , Canais de Cátion TRPV/metabolismo , Regulação para Cima/efeitos dos fármacos , Adulto , Capsaicina/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Canais de Cloreto/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Diterpenos/farmacologia , Condutividade Elétrica , Espaço Extracelular/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Concentração de Íons de Hidrogênio , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/efeitos dos fármacos , Osmose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Canais de Potássio/metabolismo , Temperatura
11.
Am J Physiol Lung Cell Mol Physiol ; 310(9): L846-59, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26968768

RESUMO

An increase in cytosolic free Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and a critical stimulation for PASMC proliferation and migration. Previously, we demonstrated that expression and function of calcium sensing receptors (CaSR) in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH) and animals with experimental pulmonary hypertension (PH) were greater than in PASMC from normal subjects and control animals. However, the mechanisms by which CaSR triggers Ca(2+) influx in PASMC and the implication of CaSR in the development of PH remain elusive. Here, we report that CaSR functionally interacts with TRPC6 to regulate [Ca(2+)]cyt in PASMC. Downregulation of CaSR or TRPC6 with siRNA inhibited Ca(2+)-induced [Ca(2+)]cyt increase in IPAH-PASMC (in which CaSR is upregulated), whereas overexpression of CaSR or TRPC6 enhanced Ca(2+)-induced [Ca(2+)]cyt increase in normal PASMC (in which CaSR expression level is low). The upregulated CaSR in IPAH-PASMC was also associated with enhanced Akt phosphorylation, whereas blockade of CaSR in IPAH-PASMC attenuated cell proliferation. In in vivo experiments, deletion of the CaSR gene in mice (casr(-/-)) significantly inhibited the development and progression of experimental PH and markedly attenuated acute hypoxia-induced pulmonary vasoconstriction. These data indicate that functional interaction of upregulated CaSR and upregulated TRPC6 in PASMC from IPAH patients and animals with experimental PH may play an important role in the development and progression of sustained pulmonary vasoconstriction and pulmonary vascular remodeling. Blockade or downregulation of CaSR and/or TRPC6 with siRNA or miRNA may be a novel therapeutic strategy to develop new drugs for patients with pulmonary arterial hypertension.


Assuntos
Hipertensão Pulmonar/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Canais de Cátion TRPC/fisiologia , Animais , Sinalização do Cálcio , Hipóxia Celular , Movimento Celular , Células Cultivadas , Células HEK293 , Humanos , Hipertensão Pulmonar/patologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Masculino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Receptores de Detecção de Cálcio , Canal de Cátion TRPC6 , Remodelação Vascular , Vasoconstrição
12.
Am J Physiol Lung Cell Mol Physiol ; 309(9): L1027-36, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26361875

RESUMO

Inhibitors of sodium-glucose cotransporter (SGLT)2 are a new class of oral drugs for type 2 diabetic patients that reduce plasma glucose levels by inhibiting renal glucose reabsorption. There is increasing evidence showing the beneficial effect of SGLT2 inhibitors on glucose control; however, less information is available regarding the impact of SGLT2 inhibitors on cardiovascular outcomes. The present study was designed to determine whether SGLT inhibitors regulate vascular relaxation in mouse pulmonary and coronary arteries. Phlorizin (a nonspecific SGLT inhibitor) and canagliflozin (a SGLT2-specific inhibitor) relaxed pulmonary arteries in a dose-dependent manner, but they had little or no effect on coronary arteries. Pretreatment with phlorizin or canagliflozin significantly inhibited sodium nitroprusside (SNP; a nitric oxide donor)-induced vascular relaxation in pulmonary arteries but not in coronary arteries. Phlorizin had no effect on cGMP-dependent relaxation in pulmonary arteries. SNP induced membrane hyperpolarization in human pulmonary artery smooth muscle cells, and pretreatment of cells with phlorizin and canagliflozin attenuated SNP-induced membrane hyperpolarization by decreasing K(+) activities induced by SNP. Contrary to the result observed in ex vivo experiments with SGLT inhibitors, SNP-dependent relaxation in pulmonary arteries was not altered by chronic administration of canagliflozin. On the other hand, canagliflozin administration significantly enhanced SNP-dependent relaxation in coronary arteries in diabetic mice. These data suggest that SGLT inhibitors differentially regulate vascular relaxation depending on the type of arteries, duration of the treatment, and health condition, such as diabetes.


Assuntos
Vasos Coronários/metabolismo , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Florizina/farmacologia , Artéria Pulmonar/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose , Vasodilatação/efeitos dos fármacos , Animais , Humanos , Masculino , Camundongos , Especificidade de Órgãos , Transportador 2 de Glucose-Sódio/metabolismo
13.
Am J Physiol Cell Physiol ; 307(4): C373-83, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24920677

RESUMO

An increase in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for pulmonary arterial medial hypertrophy in patients with idiopathic pulmonary arterial hypertension (IPAH). Vascular smooth muscle cells (SMC) sense the blood flow shear stress through interstitial fluid driven by pressure or direct exposure to blood flow in case of endothelial injury. Mechanical stimulus can increase [Ca(2+)]cyt. Here we report that flow shear stress raised [Ca(2+)]cyt in PASMC, while the shear stress-mediated rise in [Ca(2+)]cyt and the protein expression level of TRPM7 and TRPV4 channels were significantly greater in IPAH-PASMC than in normal PASMC. Blockade of TRPM7 by 2-APB or TRPV4 by Ruthenium red inhibited shear stress-induced rise in [Ca(2+)]cyt in normal and IPAH-PASMC, while activation of TRPM7 by bradykinin or TRPV4 by 4αPDD induced greater increase in [Ca(2+)]cyt in IPAH-PASMC than in normal PASMC. The bradykinin-mediated activation of TRPM7 also led to a greater increase in [Mg(2+)]cyt in IPAH-PASMC than in normal PASMC. Knockdown of TRPM7 and TRPV4 by siRNA significantly attenuated the shear stress-mediated [Ca(2+)]cyt increases in normal and IPAH-PASMC. In conclusion, upregulated mechanosensitive channels (e.g., TRPM7, TRPV4, TRPC6) contribute to the enhanced [Ca(2+)]cyt increase induced by shear stress in PASMC from IPAH patients. Blockade of the mechanosensitive cation channels may represent a novel therapeutic approach for relieving elevated [Ca(2+)]cyt in PASMC and thereby inhibiting sustained pulmonary vasoconstriction and pulmonary vascular remodeling in patients with IPAH.


Assuntos
Sinalização do Cálcio , Hipertensão Pulmonar/metabolismo , Mecanotransdução Celular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Vasoconstrição , Pressão Arterial , Sinalização do Cálcio/efeitos dos fármacos , Estudos de Casos e Controles , Células Cultivadas , Hipertensão Pulmonar Primária Familiar , Humanos , Hipertensão Pulmonar/fisiopatologia , Magnésio/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Proteínas Serina-Treonina Quinases , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Interferência de RNA , Fluxo Sanguíneo Regional , Estresse Mecânico , Canais de Cátion TRPM/efeitos dos fármacos , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Transfecção , Vasoconstrição/efeitos dos fármacos
14.
Am J Physiol Cell Physiol ; 304(11): C1042-52, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23426966

RESUMO

Electromechanical coupling via membrane depolarization-mediated activation of voltage-dependent Ca(2+) channels (VDCC) is an important mechanism in regulating pulmonary vascular tone, while mouse is an animal model often used to study pathogenic mechanisms of pulmonary vascular disease. The function of VDCC in mouse pulmonary artery (PA) smooth muscle cells (PASMC), however, has not been characterized, and their functional role in reactive oxygen species (ROS)-mediated regulation of vascular function remains unclear. In this study, we characterized the electrophysiological and pharmacological properties of VDCC in PASMC and the divergent effects of ROS produced by xanthine oxidase (XO) and hypoxanthine (HX) on VDCC in PA and mesenteric artery (MA). Our data show that removal of extracellular Ca(2+) or application of nifedipine, a dihydropyridine VDCC blocker, both significantly inhibited 80 mM K(+)-mediated PA contraction. In freshly dissociated PASMC, the maximum inward Ca(2+) currents were -2.6 ± 0.2 pA/pF at +10 mV (with a holding potential of -70 mV). Window currents were between -40 and +10 mV with a peak at -15.4 mV. Nifedipine inhibited currents with an IC(50) of 0.023 µM, and 1 µM Bay K8644, a dihydropyridine VDCC agonist, increased the inward currents by 61%. XO/HX attenuated 60 mM K(+)-mediated increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) due to Ca(2+) influx through VDCC in PASMC. Exposure to XO/HX caused relaxation in PA preconstricted by 80 mM K(+) but not in aorta and MA. In contrast, H(2)O(2) inhibited high K(+)-mediated increase in [Ca(2+)](cyt) and caused relaxation in both PA and MA. Indeed, RT-PCR and Western blot analysis revealed significantly lower expression of Ca(V)1.3 in MA compared with PA. Thus our study characterized the properties of VDCC and demonstrates that ROS differentially regulate vascular contraction by regulating VDCC in PA and systemic arteries.


Assuntos
Canais de Cálcio/metabolismo , Contração Muscular/fisiologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Camundongos , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Am J Physiol Lung Cell Mol Physiol ; 305(2): L154-64, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23686856

RESUMO

Hypoxia-induced pulmonary hypertension (HPH) is characterized by sustained pulmonary vasoconstriction and vascular remodeling, both of which are mediated by pulmonary artery smooth muscle cell (PASMC) contraction and proliferation, respectively. An increase in cytosolic Ca²âº concentration ([Ca²âº]cyt) is a major trigger for pulmonary vasoconstriction and an important stimulus for cell proliferation in PASMCs. Ca²âº influx through voltage-dependent Ca²âº channels (VDCC) is an important pathway for the regulation of [Ca²âº]cyt. The potential role for L- and T-type VDCC in the development of HPH is still unclear. Using a hypoxic-induced pulmonary hypertension mouse model, we undertook this study to identify if VDCC in pulmonary artery (PA) are functionally upregulated and determine which type of VDCC are altered in HPH. Mice subjected to chronic hypoxia developed pulmonary hypertension within 4 wk, and high-K⁺- and U-46619-induced contraction of PA was greater in chronic hypoxic mice than that in normoxic control mice. Additionally, we demonstrate that high-K⁺- and U-46619-induced Ca²âº influx in PASMC is significantly increased in the hypoxic group. The VDCC activator, Bay K8864, induced greater contraction of the PA of hypoxic mice than in that of normoxic mice in isometric force measurements. L-type and T-type VDCC blockers significantly attenuated absolute contraction of the PA in hypoxic mice. Chronic hypoxia did not increase high-K⁺- and U-46619-induced contraction of mesenteric artery (MA). Compared with MA, PA displayed higher expression of calcium channel voltage-dependent L-type α1C-subunit (Cav1.2) and T-type α1H-subunit (Cav3.2) upon exposure to chronic hypoxia. In conclusion, both L-type and T-type VDCC were functionally upregulated in PA, but not MA, in HPH mice, which could result from selectively increased expression of Cav1.2 and Cav3.2.


Assuntos
Canais de Cálcio Tipo L/biossíntese , Canais de Cálcio Tipo T/biossíntese , Regulação da Expressão Gênica , Hipóxia/metabolismo , Artéria Pulmonar/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Animais , Cálcio/metabolismo , Agonistas dos Canais de Cálcio/farmacologia , Doença Crônica , Hipóxia/patologia , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/patologia , Camundongos , Potássio/metabolismo , Artéria Pulmonar/patologia , Fatores de Tempo , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos
16.
Front Physiol ; 14: 1228488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781225

RESUMO

Introduction: Phosphorylation of smooth muscle (SM) myosin regulatory light chain (RLC20) is a critical switch leading to SM contraction. The canonical view held that only the short isoform of myosin light chain kinase (MLCK1) catalyzed this reaction. It is now accepted that auxiliary kinases may contribute to vascular SM tone and contractility. We have previously reported that p90 ribosomal S6 kinase (RSK2) functions as such a kinase, in parallel with MLCK1, contributing ∼25% of the maximal myogenic force in resistance arteries. Thus, RSK2 may be instrumental in the regulation of basal vascular tone and blood pressure. Here, we take advantage of a MLCK1 null mouse (mylk1 -/-) to further test our hypothesis that RSK2 can function as an MLCK, playing a significant physiological role in SM contractility. Methods: Using fetal (E14.5-18.5) SM tissues, as embryos die at birth, we investigated the necessity of MLCK for contractility and fetal development and determined the ability of RSK2 kinase to compensate for the lack of MLCK and characterized its signaling pathway in SM. Results and Discussion: Agonists induced contraction and RLC20 phosphorylation in mylk1 -/- SM was attenuated by RSK2 inhibition. The pCa-tension relationships in permeabilized strips of bladder showed no difference in Ca2+ sensitivity in WT vs mylk1 -/- muscles, although the magnitude of force responses was considerably smaller in the absence of MLCK. The magnitude of contractile responses was similar upon addition of GTPγS to activate the RhoA/ROCK pathway or calyculinA to inhibit the myosin phosphatase. The Ca2+-dependent tyrosine kinase, Pyk2, contributed to RSK2-mediated contractility and RLC20 phosphorylation. Proximity-ligation and immunoprecipitation assays demonstrated an association of RSK2, PDK1 and ERK1/2 with MLCK and actin. RSK2, PDK1, ERK1/2 and MLCK formed a signaling complex on the actin filament, positioning them for interaction with adjacent myosin heads. The Ca2+-dependent component reflected the agonist mediated increases in Ca2+, which activated the Pyk2/PDK1/RSK2 signaling cascade. The Ca2+-independent component was through activation of Erk1/2/PDK1/RSK2 leading to direct phosphorylation of RLC20, to increase contraction. Overall, RSK2 signaling constitutes a new third signaling pathway, in addition to the established Ca2+/CaM/MLCK and RhoA/ROCK pathways to regulate SM contractility.

17.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37292593

RESUMO

Background: Phosphorylation of smooth muscle (SM) myosin regulatory light chain (RLC 20 ) is a critical switch leading to contraction or cell migration. The canonical view held that the only kinase catalyzing this reaction is the short isoform of myosin light chain kinase (MLCK1). Auxiliary kinases may be involved and play a vital role in blood pressure homeostasis. We have previously reported that p90 ribosomal S6 kinase (RSK2) functions as such a kinase, in parallel with the classical MLCK1, contributing ∼25% of the maximal myogenic force in resistance arteries and regulating blood pressure. Here, we take advantage of a MLCK1 null mouse to further test our hypothesis that RSK2 can function as an MLCK, playing a significant physiological role in SM contractility. Methods: Fetal (E14.5-18.5) SM tissues were used as embryos die at birth. We investigated the necessity of MLCK for contractility, cell migration and fetal development and determined the ability of RSK2 kinase to compensate for the lack of MLCK and characterized it's signaling pathway in SM. Results: Agonists induced contraction and RLC 20 phosphorylation in mylk1 -/- SM, that was inhibited by RSK2 inhibitors. Embryos developed and cells migrated in the absence of MLCK. The pCa-tension relationships in WT vs mylk1 -/- muscles demonstrated a Ca 2+ -dependency due to the Ca 2+ -dependent tyrosine kinase Pyk2, known to activate PDK1 that phosphorylates and fully activates RSK2. The magnitude of contractile responses was similar upon addition of GTPγS to activate the RhoA/ROCK pathway. The Ca 2+ -independent component was through activation of Erk1/2/PDK1/RSK2 leading to direct phosphorylation of RLC 20 , to increase contraction. RSK2, PDK1, Erk1/2 and MLCK formed a signaling complex on the actin filament, optimally positioning them for interaction with adjacent myosin heads. Conclusions: RSK2 signaling constitutes a new third signaling pathway, in addition to the established Ca 2+ /CAM/MLCK and RhoA/ROCK pathways to regulate SM contractility and cell migration.

18.
Am J Physiol Cell Physiol ; 303(12): C1229-43, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23034390

RESUMO

Pulmonary artery smooth muscle cells (PASMCs) are more depolarized and display higher Ca(2+) levels in pulmonary hypertension (PH). Whether the functional properties and expression of Ca(2+)-activated Cl- channels (Cl(Ca)), an important excitatory mechanism in PASMCs, are altered in PH is unknown. The potential role of Cl(Ca) channels in PH was investigated using the monocrotaline (MCT)-induced PH model in the rat. Three weeks postinjection with a single dose of MCT (50 mg/kg ip), the animals developed right ventricular hypertrophy (heart weight measurements) and changes in pulmonary arterial flow (pulse-waved Doppler imaging) that were consistent with increased pulmonary arterial pressure and PH. Whole cell patch experiments revealed an increase in niflumic acid (NFA)-sensitive Ca(2+)-activated Cl(-) current [I(Cl(Ca))] density in PASMCs from large conduit and small intralobar pulmonary arteries of MCT-treated rats vs. aged-matched saline-injected controls. Quantitative RT-PCR and Western blot analysis revealed that the alterations in I(Cl(Ca)) were accompanied by parallel changes in the expression of TMEM16A, a gene recently shown to encode for Cl(Ca) channels. The contraction to serotonin of conduit and intralobar pulmonary arteries from MCT-treated rats exhibited greater sensitivity to nifedipine (1 µM), an l-type Ca(2+) channel blocker, and NFA (30 or 100 µM, with or without 10 µM indomethacin to inhibit cyclooxygenases) or T16A(Inh)-A01 (10 µM), TMEM16A/Cl(Ca) channel inhibitors, than that of control animals. In conclusion, augmented Cl(Ca)/TMEM16A channel activity is a major contributor to the changes in electromechanical coupling of PA in this model of PH. TMEM16A-encoded channels may therefore represent a novel therapeutic target in this disease.


Assuntos
Canais de Cloreto/biossíntese , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/fisiopatologia , Animais , Anoctamina-1 , Bloqueadores dos Canais de Cálcio/farmacologia , Agonistas dos Canais de Cloreto , Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/fisiologia , Inibidores de Ciclo-Oxigenase/farmacologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/tratamento farmacológico , Indometacina/farmacologia , Masculino , Monocrotalina/toxicidade , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Nifedipino/farmacologia , Ácido Niflúmico/farmacologia , Técnicas de Patch-Clamp , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Serotonina/farmacologia , Tiazóis/farmacologia
20.
J Biol Chem ; 284(47): 32507-21, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19767392

RESUMO

The present study was undertaken to determine whether the two ubiquitously expressed Ca(2+)-independent phosphatases PP1 and PP2A regulate Ca(2+)-activated Cl(-) currents (I(Cl(Ca))) elicited by 500 nM [Ca(2+)](i) in rabbit pulmonary artery (PA) myocytes dialyzed with or without 3 mM ATP. Reverse transcription-PCR experiments revealed the expression of PP1alpha, PP1beta/delta, PP1gamma, PP2Aalpha, PP2Abeta, PP2Balpha (calcineurin (CaN) Aalpha), and PP2Bbeta (CaN Abeta) but not PP2Bgamma (CaN Agamma) in rabbit PA. Western blot and immunofluorescence experiments confirmed the presence of all three PP1 isoforms and PP2A. Intracellular dialysis with a peptide inhibitor of calcineurin (CaN-AIP); the non-selective PP1/PP2A inhibitors okadaic acid (0.5, 10, or 30 nM), calyculin A (10 nM), or cantharidin (100 nM); and the selective PP1 inhibitor NIPP-1 (100 pM) potently antagonized the recovery of I(Cl(Ca)) in cells dialyzed with no ATP, whereas the PP2A-selective antagonist fostriecin (30 or 150 nM) was ineffective. The combined application of okadaic acid (10 nM) and CaN-autoinhibitory peptide (50 microM) did not potentiate the response of I(Cl(Ca)) in 0 ATP produced by maximally inhibiting CaN or PP1/PP2A alone. Consistent with the non-additive effects of either classes of phosphatases, the PP1 inhibitor NIPP-1 (100 pM) antagonized the recovery of I(Cl(Ca)) induced by exogenous CaN Aalpha (0.5 microM). These results demonstrate that I(Cl(Ca)) in PA myocytes is regulated by CaN and PP1 and/or PP2A. Our data also suggest the existence of a functional link between these two classes of phosphatases.


Assuntos
Cálcio/química , Cloro/química , Regulação Enzimológica da Expressão Gênica , Pulmão/metabolismo , Miócitos de Músculo Liso/citologia , Monoéster Fosfórico Hidrolases/química , Artéria Pulmonar/citologia , Animais , Cantaridina/farmacologia , Inibidores Enzimáticos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Toxinas Marinhas , Ácido Okadáico/farmacologia , Oxazóis/farmacologia , Técnicas de Patch-Clamp , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA