Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Antimicrob Agents Chemother ; 67(2): e0133122, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36700643

RESUMO

Dengue virus (DENV) is a Flavivirus that causes the most prevalent arthropod-borne viral disease. Clinical manifestation of DENV infection ranges from asymptomatic to severe symptoms that can lead to death. Unfortunately, no antiviral treatments against DENV are currently available. In order to identify novel DENV inhibitors, we screened a library of 1,604 chemically diversified fragment-based compounds using DENV reporter viruses that allowed quantification of viral replication in infected cells. Following a validation screening, the two best inhibitor candidates were N-phenylpyridine-3-carboxamide (NPP3C) and 6-acetyl-1H-indazole (6A1HI). The half maximal effective concentration of NPP3C and 6A1H1 against DENV were 7.1 µM and 6.5 µM, respectively. 6A1H1 decreased infectious DENV particle production up to 1,000-fold without any cytotoxicity at the used concentrations. While 6A1HI was DENV-specific, NPP3C also inhibited the replication of other flaviviruses such as West Nile virus and Zika virus. Structure-activity relationship (SAR) studies with 151 analogues revealed key structural elements of NPP3C and 6A1HI required for their antiviral activity. Time-of-drug-addition experiments identified a postentry step as a target of these compounds. Consistently, using a DENV subgenomic replicon, we demonstrated that these compounds specifically impede the viral RNA replication step and exhibit a high genetic barrier-to-resistance. In contrast, viral RNA translation and the de novo biogenesis of DENV replication organelles were not affected. Overall, our data unveil NPP3C and 6A1H1 as novel DENV inhibitors. The information revealed by our SAR studies will help chemically optimize NPP3C and 6A1H1 in order to improve their anti-flaviviral potency and to challenge them in in vivo models.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Vírus da Dengue/genética , Estágios do Ciclo de Vida , Replicação do RNA , RNA Viral/genética , Replicação Viral , Zika virus/genética , RNA Subgenômico/genética
2.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37205454

RESUMO

Bacterial resistance to antibiotics is a rapidly increasing threat to human health. New strategies to combat resistant organisms are desperately needed. One potential avenue is targeting two-component systems, which are the main bacterial signal transduction pathways used to regulate development, metabolism, virulence, and antibiotic resistance. These systems consist of a homodimeric membrane-bound sensor histidine kinase, and a cognate effector, the response regulator. The high sequence conservation in the catalytic and adenosine triphosphate-binding (CA) domain of histidine kinases and their essential role in bacterial signal transduction could enable broad-spectrum antibacterial activity. Through this signal transduction, histidine kinases regulate multiple virulence mechanisms including toxin production, immune evasion, and antibiotic resistance. Targeting virulence, as opposed to development of bactericidal compounds, could reduce evolutionary pressure for acquired resistance. Additionally, compounds targeting the CA domain have the potential to impair multiple two-component systems that regulate virulence in one or more pathogens. We conducted structure-activity relationship studies of 2-aminobenzothiazole-based inhibitors designed to target the CA domain of histidine kinases. We found these compounds have anti-virulence activities in Pseudomonas aeruginosa, reducing motility phenotypes and toxin production associated with the pathogenic functions of this bacterium.

3.
Nat Commun ; 15(1): 4175, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755132

RESUMO

Drug-recalcitrant infections are a leading global-health concern. Bacterial cells benefit from phenotypic variation, which can suggest effective antimicrobial strategies. However, probing phenotypic variation entails spatiotemporal analysis of individual cells that is technically challenging, and hard to integrate into drug discovery. In this work, we develop a multi-condition microfluidic platform suitable for imaging two-dimensional growth of bacterial cells during transitions between separate environmental conditions. With this platform, we implement a dynamic single-cell screening for pheno-tuning compounds, which induce a phenotypic change and decrease cell-to-cell variation, aiming to undermine the entire bacterial population and make it more vulnerable to other drugs. We apply this strategy to mycobacteria, as tuberculosis poses a major public-health threat. Our lead compound impairs Mycobacterium tuberculosis via a peculiar mode of action and enhances other anti-tubercular drugs. This work proves that harnessing phenotypic variation represents a successful approach to tackle pathogens that are increasingly difficult to treat.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Análise de Célula Única , Tuberculose , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Análise de Célula Única/métodos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Microfluídica/métodos , Fenótipo , Descoberta de Drogas/métodos , Sinergismo Farmacológico
4.
J Med Chem ; 66(19): 13416-13427, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37732695

RESUMO

Establishing robust structure-activity relationships (SARs) is key to successful drug discovery campaigns, yet it often remains elusive due to screening and hit validation artifacts (false positives and false negatives), which frequently result in unproductive downstream expenditures of time and resources. To address this issue, we developed an integrative biophysics-driven strategy that expedites hit-to-lead discovery, mitigates false positives/negatives and common hit validation errors, and provides a robust approach to obtaining accurate binding and affinity measurements. The advantage of this method is that it vastly improves the clarity and reproducibility for affinity-driven SAR by monitoring and eliminating confounding factors. We demonstrate the ease at which high-quality micromolar binders can be generated from the initial millimolar fragment screening hits against an "undruggable" protein target, HRas.


Assuntos
Descoberta de Drogas , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Espectroscopia de Ressonância Magnética , Relação Estrutura-Atividade
5.
ACS Omega ; 7(15): 13155-13163, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35474811

RESUMO

Fluorine (19F) NMR strategies are increasingly being employed for evaluating ligand binding to macromolecules, among many other uses. 19F NMR offers many advantages as a result of its sensitive spin 1/2 nucleus, 100% natural abundance, and wide chemical shift range. Moreover, because of its absence from biological samples, one can directly monitor ligand binding without background interference from the macromolecule. Therefore, all these aforementioned features make it an attractive approach for screening compounds. However, the detection of ligand binding, especially those with weak affinities, can require interpretations of minor changes in chemical shifts. Thus, chemical shift referencing is critical for accurate measurements and interpretations. Unfortunately, one cannot rely on spectrometer indirect referencing alone, and internal chemical references have sample-dependent issues. Here, we evaluated 10 potential candidate compounds that could serve as 19F NMR chemical references. Multiple factors were systematically evaluated for each candidate to monitor the suitability for 19F NMR screening purposes. These factors include aqueous solubility, buffer compatibility, salt compatibility, aqueous stability, tolerability to pH changes, temperature changes, and compound pooling. It was concluded that there was no ideal candidate, but five compounds had properties that met the screening requirements.

6.
ChemMedChem ; 17(10): e202200092, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35298873

RESUMO

A focused drug repurposing approach is described where an FDA-approved drug is rationally selected for biological testing based on structural similarities to a fragment compound found to bind a target protein by an NMR screen. The approach is demonstrated by first screening a curated fragment library using 19 F NMR to discover a quality binder to ACE2, the human receptor required for entry and infection by the SARS-CoV-2 virus. Based on this binder, a highly related scaffold was derived and used as a "smart scaffold" or template in a computer-aided finger-print search of a library of FDA-approved or marketed drugs. The most interesting structural match involved the drug vortioxetine which was then experimentally shown by NMR spectroscopy to bind directly to human ACE2. Also, an ELISA assay showed that the drug inhibits the interaction of human ACE2 to the SARS-CoV-2 receptor-binding-domain (RBD). Moreover, our cell-culture infectivity assay confirmed that vortioxetine is active against SARS-CoV-2 and inhibits viral replication. Thus, the use of "smart scaffolds" based on binders from fragment screens may have general utility for identifying candidates of FDA-approved or marketed drugs as a rapid repurposing strategy. Similar approaches can be envisioned for other fields involving small-molecule chemical applications.


Assuntos
Antivirais , Reposicionamento de Medicamentos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Antivirais/farmacologia , Reposicionamento de Medicamentos/métodos , Humanos , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Vortioxetina , Tratamento Farmacológico da COVID-19
7.
Nat Protoc ; 16(11): 5250-5273, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707256

RESUMO

The free-state solution behaviors of drugs profoundly affect their properties. Therefore, it is critical to properly evaluate a drug's unique multiphase equilibrium when in an aqueous enviroment, which can comprise lone molecules, self-associating aggregate states and solid phases. To date, the full range of nano-entities that drugs can adopt has been a largely unexplored phenomenon. This protocol describes how to monitor the solution behavior of drugs, revealing the nano-entities formed as a result of self-associations. The procedure begins with a simple NMR 1H assay, and depending on the observations, subsequent NMR dilution, NMR T2-CPMG (spin-spin relaxation Carr-Purcell-Meiboom-Gill) and NMR detergent assays are used to distinguish between the existence of fast-tumbling lone drug molecules, small drug aggregates and slow-tumbling colloids. Three orthogonal techniques (dynamic light scattering, transmission electron microscopy and confocal laser scanning microscopy) are also described that can be used to further characterize any large colloids. The protocol can take a non-specialist between minutes to a few hours; thus, libraries of compounds can be evaluated within days.


Assuntos
Nanoestruturas/química , Preparações Farmacêuticas/química , Espectroscopia de Ressonância Magnética
8.
ACS Chem Biol ; 16(11): 2158-2163, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34699722

RESUMO

Fragment-based lead discovery has emerged over the last decades as one of the most powerful techniques for identifying starting chemical matter to target specific proteins or nucleic acids in vitro. However, the use of such low-molecular-weight fragment molecules in cell-based phenotypic assays has been historically avoided because of concerns that bioassays would be insufficiently sensitive to detect the limited potency expected for such small molecules and that the high concentrations required would likely implicate undesirable artifacts. Herein, we applied phenotype cell-based screens using a curated fragment library to identify inhibitors against a range of pathogens including Leishmania, Plasmodium falciparum, Neisseria, Mycobacterium, and flaviviruses. This proof-of-concept shows that fragment-based phenotypic lead discovery (FPLD) can serve as a promising complementary approach for tackling infectious diseases and other drug-discovery programs.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Relação Estrutura-Atividade
9.
J Med Chem ; 62(17): 7885-7896, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31422659

RESUMO

Small molecules can self-assemble in aqueous solution into a wide range of nanoentity types and sizes (dimers, n-mers, micelles, colloids, etc.), each having their own unique properties. This has important consequences in the context of drug discovery including issues related to nonspecific binding, off-target effects, and false positives and negatives. Here, we demonstrate the use of the spin-spin relaxation Carr-Purcell-Meiboom-Gill NMR experiment, which is sensitive to molecular tumbling rates and can expose larger aggregate species that have slower rotational correlations. The strategy easily distinguishes lone-tumbling molecules versus nanoentities of various sizes. The technique is highly sensitive to chemical exchange between single-molecule and aggregate states and can therefore be used as a reporter when direct measurement of aggregates is not possible by NMR. Interestingly, we found differences in solution behavior for compounds within structurally related series, demonstrating structure-nanoentity relationships. This practical experiment is a valuable tool to support drug discovery efforts.


Assuntos
Nanopartículas/química , Bibliotecas de Moléculas Pequenas/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química
10.
ChemMedChem ; 13(14): 1377-1386, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29722149

RESUMO

A rapid and practical approach for the discovery of new chemical matter for targeting pathogens and diseases is described. Fragment-based phenotypic lead discovery (FPLD) combines aspects of traditional fragment-based lead discovery (FBLD), which involves the screening of small-molecule fragment libraries to target specific proteins, with phenotypic lead discovery (PLD), which typically involves the screening of drug-like compounds in cell-based assays. To enable FPLD, a diverse library of fragments was first designed, assembled, and curated. This library of soluble, low-molecular-weight compounds was then pooled to expedite screening. Axenic cultures of Leishmania promastigotes were screened, and single hits were then tested for leishmanicidal activity against intracellular amastigote forms in infected murine bone-marrow-derived macrophages without evidence of toxicity toward mammalian cells. These studies demonstrate that FPLD can be a rapid and effective means to discover hits that can serve as leads for further medicinal chemistry purposes or as tool compounds for identifying known or novel targets.


Assuntos
Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Células Cultivadas , Descoberta de Drogas/métodos , Feminino , Ensaios de Triagem em Larga Escala/métodos , Humanos , Indazóis/química , Indazóis/farmacologia , Indóis/química , Indóis/farmacologia , Macrófagos/parasitologia , Testes de Sensibilidade Parasitária/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA