Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanomedicine ; 10(1): 19-34, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23871761

RESUMO

The development of novel nanomaterials and their use in biomedicine has received much attention in recent years. Significant advances have been made in the synthesis of nanomaterials with controlled geometry, physicochemical properties, surface charge, and surface tailoring with bioactive polymers. These successful efforts have resulted in improved biocompatibility and active targeting of tumour tissues, leading to the development of a diverse range of nanomaterials that can recognize cancers, deliver anticancer drugs and destroy tumours by a variety of therapeutic techniques. The focus of this review is to provide an overview of the nanomaterials that have been devised for the detection and treatment of various types of cancer, as well as to underline the emerging possibilities of nanomaterials for applications in anticancer therapy. FROM THE CLINICAL EDITOR: In this comprehensive review, the current state-of-the art of nanomaterials for cancer diagnosis and treatment is presented. Emerging possibilities and future concepts are discussed as well.


Assuntos
Antineoplásicos/uso terapêutico , Nanomedicina , Nanopartículas/uso terapêutico , Neoplasias/terapia , Antineoplásicos/química , Humanos , Nanopartículas/química , Neoplasias/patologia , Polímeros/química , Polímeros/uso terapêutico
2.
Int J Nanomedicine ; 10: 6891-903, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26604755

RESUMO

Human beings suffer from several infectious agents such as viruses, bacteria, and protozoans. Recently, there has been a great interest in developing biocompatible nanostructures to deal with infectious agents. This study investigated benign ZnCuO nanostructures that were visible-light-responsive due to the resident copper in the lattice. The nanostructures were synthesized through a size-controlled hot-injection process, which was adaptable to the surface ligation processes. The nanostructures were then characterized through transmission electron microscopy, X-ray diffraction, diffused reflectance spectroscopy, Rutherford backscattering, and photoluminescence analysis to measure crystallite nature, size, luminescence, composition, and band-gap analyses. Antiprotozoal efficiency of the current nanoparticles revealed the photodynamic killing of Leishmania protozoan, thus acting as efficient metal-based photosensitizers. The crystalline nanoparticles showed good biocompatibility when tested for macrophage toxicity and in hemolysis assays. The study opens a wide avenue for using toxic material in resident nontoxic forms as an effective antiprotozoal treatment.


Assuntos
Cobre/química , Leishmania/efeitos dos fármacos , Macrófagos/parasitologia , Nanopartículas Metálicas/química , Fármacos Fotossensibilizantes/química , Infecções por Protozoários/tratamento farmacológico , Zinco/química , Apoptose , Cristalização , Relação Dose-Resposta a Droga , Desenho de Fármacos , Hemólise , Humanos , Concentração Inibidora 50 , Luz , Luminescência , Macrófagos/citologia , Microscopia Eletrônica de Transmissão , Necrose , Tamanho da Partícula , Permeabilidade , Fotoquímica , Espécies Reativas de Oxigênio/metabolismo , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA