Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
PLoS Genet ; 20(1): e1011126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38252672

RESUMO

Dobzhansky and Muller proposed a general mechanism through which microevolution, the substitution of alleles within populations, can cause the evolution of reproductive isolation between populations and, therefore, macroevolution. As allopatric populations diverge, many combinations of alleles differing between them have not been tested by natural selection and may thus be incompatible. Such genetic incompatibilities often cause low fitness in hybrids between species. Furthermore, the number of incompatibilities grows with the genetic distance between diverging populations. However, what determines the rate and pattern of accumulation of incompatibilities remains unclear. We investigate this question by simulating evolution on holey fitness landscapes on which genetic incompatibilities can be identified unambiguously. We find that genetic incompatibilities accumulate more slowly among genetically robust populations and identify two determinants of the accumulation rate: recombination rate and population size. In large populations with abundant genetic variation, recombination selects for increased genetic robustness and, consequently, incompatibilities accumulate more slowly. In small populations, genetic drift interferes with this process and promotes the accumulation of genetic incompatibilities. Our results suggest a novel mechanism by which genetic drift promotes and recombination hinders speciation.


Assuntos
Evolução Biológica , Especiação Genética , Modelos Genéticos , Deriva Genética , Recombinação Genética , Hibridização Genética
2.
J Math Biol ; 87(6): 88, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37994999

RESUMO

Asexual populations are expected to accumulate deleterious mutations through a process known as Muller's ratchet. Lynch and colleagues proposed that the ratchet eventually results in a vicious cycle of mutation accumulation and population decline that drives populations to extinction. They called this phenomenon mutational meltdown. Here, we analyze mutational meltdown using a multi-type branching process model where, in the presence of mutation, populations are doomed to extinction. We analyse the change in size and composition of the population and the time of extinction under this model.


Assuntos
Genética Populacional , Modelos Genéticos , Mutação , Reprodução Assexuada
3.
Mol Biol Evol ; 38(7): 2869-2879, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33744956

RESUMO

Populations of Escherichia coli selected in constant and fluctuating environments containing lactose often adapt by substituting mutations in the lacI repressor that cause constitutive expression of the lac operon. These mutations occur at a high rate and provide a significant benefit. Despite this, eight of 24 populations evolved for 8,000 generations in environments containing lactose contained no detectable repressor mutations. We report here on the basis of this observation. We find that, given relevant mutation rates, repressor mutations are expected to have fixed in all evolved populations if they had maintained the same fitness effect they confer when introduced to the ancestor. In fact, reconstruction experiments demonstrate that repressor mutations have become neutral or deleterious in those populations in which they were not detectable. Populations not fixing repressor mutations nevertheless reached the same fitness as those that did fix them, indicating that they followed an alternative evolutionary path that made redundant the potential benefit of the repressor mutation, but involved unique mutations of equivalent benefit. We identify a mutation occurring in the promoter region of the uspB gene as a candidate for influencing the selective choice between these paths. Our results detail an example of historical contingency leading to divergent evolutionary outcomes.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Regulação Bacteriana da Expressão Gênica , Óperon Lac , Escherichia coli , Proteínas de Escherichia coli/genética , Expressão Gênica , Aptidão Genética , Repressores Lac/genética , Proteínas de Membrana/genética , Mutação
4.
Bioinformatics ; 34(15): 2659-2660, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29566129

RESUMO

Summary: Mutation accumulation (MA) is the most widely used method for directly studying the effects of mutation. By sequencing whole genomes from MA lines, researchers can directly study the rate and molecular spectra of spontaneous mutations and use these results to understand how mutation contributes to biological processes. At present there is no software designed specifically for identifying mutations from MA lines. Here we describe accuMUlate, a probabilistic mutation caller that reflects the design of a typical MA experiment while being flexible enough to accommodate properties unique to any particular experiment. Availability and implementation accuMUlate is available from https://github.com/dwinter/accuMUlate. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica/métodos , Acúmulo de Mutações , Software , Sequenciamento Completo do Genoma/métodos , Arabidopsis/genética , Biologia Computacional/métodos
5.
J Mol Evol ; 86(6): 365-378, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29955898

RESUMO

A low ratio of nonsynonymous and synonymous substitution rates (dN/dS) at a codon is an indicator of functional constraint caused by purifying selection. Intuitively, the functional constraint would also be expected to prevent such a codon from being deleted. However, to the best of our knowledge, the correlation between the rates of deletion and substitution has never actually been estimated. Here, we use 8595 protein-coding region sequences from nine mammalian species to examine the relationship between deletion rate and dN/dS. We find significant positive correlations at the levels of both sites and genes. We compared our data against controls consisting of simulated coding sequences evolving along identical phylogenetic trees, where deletions occur independently of substitutions. A much weaker correlation was found in the corresponding simulated sequences, probably caused by alignment errors. In the real data, the correlations cannot be explained by alignment errors. Separate investigations on nonsynonymous (dN) and synonymous (dS) substitution rates indicate that the correlation is most likely due to a similarity in patterns of selection rather than in mutation rates.


Assuntos
Aminoácidos/genética , Proteínas/química , Proteínas/genética , Seleção Genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Genes , Mamíferos/genética , Filogenia , Estatísticas não Paramétricas
6.
Evolution ; 77(1): 36-48, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36622280

RESUMO

Understanding the mechanisms that generate genetic variation, and thus contribute to the process of adaptation, is a major goal of evolutionary biology. Mutation and genetic exchange have been well studied as mechanisms to generate genetic variation. However, there are additional factors, such as genome architecture, that may also impact the amount of genetic variation in some populations, and the extent to which these variation generating mechanisms are themselves shaped by natural selection is still an open question. To test the effect of genome architecture on the generation of genetic variation, and hence evolvability, we studied Tetrahymena thermophila, a ciliate with an unusual genome structure and mechanism of nuclear division, called amitosis, whereby homologous chromosomes are randomly distributed to daughter cells. Amitosis leads to genetic variation among the asexual descendants of a newly produced sexual progeny because different progeny cells will contain different combinations of parental alleles. We hypothesize that amitosis thus increases the evolvability of newly produced sexual progeny relative to their unmated parents and species that undergo mitosis. To test this hypothesis, we used experimental evolution and simulations to compare the rate of adaptation in T. thermophila populations founded by a single sexual progeny to parental populations that had not had sex in many generations. The populations founded by a sexual progeny adapted more quickly than parental populations in both laboratory populations and simulated populations. This suggests that the additional genetic variation generated by amitosis of a heterozygote can increase the rate of adaptation following sex and may help explain the evolutionary success of the unusual genetic architecture of Tetrahymena and ciliates more generally.


Assuntos
Tetrahymena thermophila , Tetrahymena thermophila/genética , Cromossomos , Mutação , Genoma
7.
Mol Biol Evol ; 28(7): 2115-23, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21285032

RESUMO

Mutational robustness describes the extent to which a phenotype remains unchanged in the face of mutations. Theory predicts that the strength of direct selection for mutational robustness is at most the magnitude of the rate of deleterious mutation. As far as nucleic acid sequences are concerned, only long sequences in organisms with high deleterious mutation rates and large population sizes are expected to evolve mutational robustness. Surprisingly, recent studies have concluded that molecules that meet none of these conditions--the microRNA precursors (pre-miRNAs) of multicellular eukaryotes--show signs of selection for mutational and/or environmental robustness. To resolve the apparent disagreement between theory and these studies, we have reconstructed the evolutionary history of Drosophila pre-miRNAs and compared the robustness of each sequence to that of its reconstructed ancestor. In addition, we "replayed the tape" of pre-miRNA evolution via simulation under different evolutionary assumptions and compared these alternative histories with the actual one. We found that Drosophila pre-miRNAs have evolved under strong purifying selection against changes in secondary structure. Contrary to earlier claims, there is no evidence that these RNAs have been shaped by either direct or congruent selection for any kind of robustness. Instead, the high robustness of Drosophila pre-miRNAs appears to be mostly intrinsic and likely a consequence of selection for functional structures.


Assuntos
Drosophila/genética , Evolução Molecular , MicroRNAs/genética , Penetrância , Algoritmos , Animais , Simulação por Computador , Mutação , Conformação de Ácido Nucleico , Filogenia , Seleção Genética , Estatísticas não Paramétricas
8.
Theor Popul Biol ; 81(2): 168-78, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155293

RESUMO

The rate and effect of available beneficial mutations are key parameters in determining how a population adapts to a new environment. However, these parameters are poorly known, in large part because of the difficulty of designing and interpreting experiments to examine the rare and intrinsically stochastic process of mutation occurrence. We present a new approach to estimate the rate and selective advantage of beneficial mutations that underlie the adaptation of asexual populations. We base our approach on the analysis of experiments that track the effect of newly arising beneficial mutations on the dynamics of a neutral marker in evolving bacterial populations and develop efficient estimators of mutation rate and selective advantage. Using extensive simulations, we evaluate the accuracy of our estimators and conclude that they are quite robust to the use of relatively low experimental replication. To validate the predictions of our model, we compare theoretical and experimentally determined estimates of the selective advantage of the first beneficial mutation to fix in a series of ten replicate populations. We find that our theoretical predictions are not significantly different from experimentally determined selection coefficients. Application of our method to suitably designed experiments will allow estimation of how population evolvability depends on demographic and initial fitness parameters.


Assuntos
Evolução Molecular , Marcadores Genéticos/genética , Modelos Genéticos , Mutação , Dinâmica Populacional , Reprodução Assexuada/genética , Bactérias/genética , Intervalos de Confiança , Aptidão Genética , Genótipo , Humanos , Cadeias de Markov
9.
Nature ; 440(7080): 87-90, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16511495

RESUMO

The mutational deterministic hypothesis for the origin and maintenance of sexual reproduction posits that sex enhances the ability of natural selection to purge deleterious mutations after recombination brings them together into single genomes. This explanation requires negative epistasis, a type of genetic interaction where mutations are more harmful in combination than expected from their separate effects. The conceptual appeal of the mutational deterministic hypothesis has been offset by our inability to identify the mechanistic and evolutionary bases of negative epistasis. Here we show that negative epistasis can evolve as a consequence of sexual reproduction itself. Using an artificial gene network model, we find that recombination between gene networks imposes selection for genetic robustness, and that negative epistasis evolves as a by-product of this selection. Our results suggest that sexual reproduction selects for conditions that favour its own maintenance, a case of evolution forging its own path.


Assuntos
Evolução Biológica , Epistasia Genética , Genes Sintéticos/genética , Modelos Genéticos , Reprodução/genética , Seleção Genética , Sexo , Animais , Drosophila melanogaster/genética , Genótipo , Mutação/genética
10.
Curr Biol ; 18(21): 1694-9, 2008 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-18993077

RESUMO

Wild isolates of Caenorhabditis elegans differ in their tendency to aggregate on food [1, 2]. Most quantitative variation in this behavior is explained by a polymorphism at a single amino acid in the G protein-coupled receptor NPR-1: gregarious strains carry the 215F allele, and solitary strains carry the 215V allele [2]. Although npr-1 regulates a behavioral syndrome with potential adaptive implications, the evolutionary causes and consequences of this natural polymorphism remain unclear. Here we show that npr-1 regulates two behaviors that can promote coexistence of the two alleles. First, gregarious and solitary worms differ in their responses to food such that they can partition a single, continuous patch of food. Second, gregarious worms disperse more readily from patch to patch than do solitary worms, which can cause partitioning of a fragmented resource. The dispersal propensity of both gregarious and solitary worms increases with density. npr-1-dependent dispersal is independent of aggregation and could be part of a food-searching strategy. The gregarious allele is favored in a fragmented relative to a continuous food environment in competition experiments. We conclude that the npr-1 polymorphism could be maintained by a trade-off between dispersal and competitive ability.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Comportamento Alimentar , Polimorfismo Genético , Receptores de Neuropeptídeo Y/fisiologia , Alelos , Substituição de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Meio Ambiente , Receptores de Neuropeptídeo Y/genética , Seleção Genética
11.
PLoS Comput Biol ; 6(7): e1000848, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20628617

RESUMO

The promoter regions of many genes contain multiple binding sites for the same transcription factor (TF). One possibility is that this multiplicity evolved through transitional forms showing redundant cis-regulation. To evaluate this hypothesis, we must disentangle the relative contributions of different evolutionary mechanisms to the evolution of binding site multiplicity. Here, we attempt to do this using a model of binding site evolution. Our model considers binding sequences and their interactions with TFs explicitly, and allows us to cast the evolution of gene networks into a neutral network framework. We then test some of the model's predictions using data from yeast. Analysis of the model suggested three candidate nonadaptive processes favoring the evolution of cis-regulatory element redundancy and multiplicity: neutral evolution in long promoters, recombination and TF promiscuity. We find that recombination rate is positively associated with binding site multiplicity in yeast. Our model also indicated that weak direct selection for multiplicity (partial redundancy) can play a major role in organisms with large populations. Our data suggest that selection for changes in gene expression level may have contributed to the evolution of multiple binding sites in yeast. We conclude that the evolution of cis-regulatory element redundancy and multiplicity is impacted by many aspects of the biology of an organism: both adaptive and nonadaptive processes, both changes in cis to binding sites and in trans to the TFs that interact with them, both the functional setting of the promoter and the population genetic context of the individuals carrying them.


Assuntos
Evolução Molecular , Regulação Fúngica da Expressão Gênica/genética , Modelos Genéticos , Modelos Estatísticos , Elementos Reguladores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação , Análise por Conglomerados , Genoma Fúngico , Ligação Proteica , Recombinação Genética , Leveduras/genética
12.
Nature ; 433(7022): 152-6, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-15650738

RESUMO

Developmental processes are thought to be highly complex, but there have been few attempts to measure and compare such complexity across different groups of organisms. Here we introduce a measure of biological complexity based on the similarity between developmental and computer programs. We define the algorithmic complexity of a cell lineage as the length of the shortest description of the lineage based on its constituent sublineages. We then use this measure to estimate the complexity of the embryonic lineages of four metazoan species from two different phyla. We find that these cell lineages are significantly simpler than would be expected by chance. Furthermore, evolutionary simulations show that the complexity of the embryonic lineages surveyed is near that of the simplest lineages evolvable, assuming strong developmental constraints on the spatial positions of cells and stabilizing selection on cell number. We propose that selection for decreased complexity has played a major role in moulding metazoan cell lineages.


Assuntos
Evolução Biológica , Linhagem da Célula , Rhabditoidea/citologia , Rhabditoidea/embriologia , Urocordados/citologia , Urocordados/embriologia , Algoritmos , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Simulação por Computador , Modelos Biológicos
13.
Math Biosci ; 341: 108708, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560091

RESUMO

Evolutionary rescue is the process whereby a declining population may start growing again, thus avoiding extinction, via an increase in the frequency of fitter genotypes. These genotypes may either already be present in the population in small numbers, or arise by mutation as the population declines. We present a simple two-type discrete-time branching process model and use it to obtain results such as the probability of rescue, the shape of the population growth curve of a rescued population, and the time until the first rescuing mutation occurs. Comparisons are made to existing results in the literature in cases where both the mutation rate and the selective advantage of the beneficial mutations are small.


Assuntos
Evolução Biológica , Taxa de Mutação , Genótipo , Modelos Genéticos , Mutação , Probabilidade , Seleção Genética
14.
J Hered ; 101 Suppl 1: S142-57, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20421324

RESUMO

Theoretical investigations of the advantages of sex have tended to treat the genetic architecture of organisms as static and have not considered that genetic architecture might coevolve with reproductive mode. As a result, some potential advantages of sex may have been missed. Using a gene network model, we recently showed that recombination imposes selection for robustness to mutation and that negative epistasis can evolve as a by-product of this selection. These results motivated a detailed exploration of the mutational deterministic hypothesis, a hypothesis in which the advantage of sex depends critically on epistasis. We found that sexual populations do evolve higher mean fitness and lower genetic load than asexual populations at equilibrium, and, under moderate stabilizing selection and large population size, these equilibrium sexual populations resist invasion by asexuals. However, we found no evidence that these long- and short-term advantages to sex were explained by the negative epistasis that evolved in our experiments. The long-term advantage of sex was that sexual populations evolved a lower deleterious mutation rate, but this property was not sufficient to account for the ability of sexual populations to resist invasion by asexuals. The ability to resist asexual invasion was acquired simultaneously with an increase in recombinational robustness that minimized the cost of sex. These observations provide the first direct evidence that sexual reproduction does indeed select for conditions that favor its own maintenance. Furthermore, our results highlight the importance of considering a dynamic view of the genetic architecture to understand the evolution of sex and recombination.


Assuntos
Evolução Biológica , Epistasia Genética/genética , Redes Reguladoras de Genes/genética , Modelos Genéticos , Recombinação Genética/genética , Seleção Genética , Sexo , Simulação por Computador , Aptidão Genética/genética , Mutação/genética
15.
Dev Cell ; 4(6): 903-15, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12791274

RESUMO

Polycomb group (PcG)-mediated repression of C. elegans Hox genes has not been demonstrated, and genes homologous to components of one of the PcG complexes (PRC1) have not been identified in the C. elegans genome. We find that a mechanism of general Hox gene repression exists in C. elegans, carried out in part by SOP-2, a protein related to, but not orthologous with, any PcG protein. sop-2 mutations lead to widespread ectopic expression of Hox genes and homeotic transformations. SOP-2 contains a SAM domain, a self-associating protein domain found in other repressors, including a core component of PRC1 and ETS transcription factors. Phylogenetic analysis indicates that this domain is more closely related to those of the ETS family than to those of PcG proteins. The results suggest that global repression of Hox genes has been taken over by a different branch of the SAM domain family during the evolution of nematodes.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Helmintos , Genes Homeobox , Proteínas Repressoras/química , Sequência de Aminoácidos , Animais , Evolução Molecular , Larva , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fenótipo , Filogenia , Mapeamento Físico do Cromossomo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Homologia de Sequência de Aminoácidos
16.
Evolution ; 73(6): 1089-1100, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30997680

RESUMO

We build on previous observations that Hill-Robertson interference generates an advantage of sex that, in structured populations, can be large enough to explain the evolutionary maintenance of costly sex. We employed a gene network model that explicitly incorporates interactions between genes. Mutations in the gene networks have variable effects that depend on the genetic background in which they appear. Consequently, our simulations include two costs of sex-recombination and migration loads-that were missing from previous studies of the evolution of costly sex. Our results suggest a critical role for population structure that lies in its ability to align the long- and short-term advantages of sex. We show that the addition of population structure favored the evolution of sex by disproportionately decreasing the equilibrium mean fitness of asexual populations, primarily by increasing the strength of Muller's Ratchet. Population structure also increased the ability of the short-term advantage of sex to counter the primary limit to the evolution of sex in the gene network model-recombination load. On the other hand, highly structured populations experienced migration load in the form of Dobzhansky-Muller incompatibilities, decreasing the effective rate of migration between demes and, consequently, accelerating the accumulation of drift load in the sexual populations.


Assuntos
Evolução Biológica , Redes Reguladoras de Genes , Sexo , Genes Sintéticos , Modelos Genéticos , Dinâmica Populacional
17.
Genome Biol Evol ; 10(11): 3038-3057, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252073

RESUMO

Transposable elements (TEs) are genomic parasites that impose fitness costs on their hosts by producing deleterious mutations and disrupting gametogenesis. Host genomes avoid these costs by regulating TE activity, particularly in germline cells where new insertions are heritable and TEs are exceptionally active. However, the capacity of different TE-associated fitness costs to select for repression in the host, and the role of selection in the evolution of TE regulation more generally remain controversial. In this study, we use forward, individual-based simulations to examine the evolution of small-RNA-mediated TE regulation, a conserved mechanism for TE repression that is employed by both prokaryotes and eukaryotes. To design and parameterize a biologically realistic model, we drew on an extensive survey of empirical studies of the transposition and regulation of P-element DNA transposons in Drosophila melanogaster. We observed that even under conservative assumptions, where small-RNA-mediated regulation reduces transposition only, repression evolves rapidly and adaptively after the genome is invaded by a new TE in simulated populations. We further show that the spread of repressor alleles through simulated populations is greatly enhanced by two additional TE-imposed fitness costs: dysgenic sterility and ectopic recombination. Finally, we demonstrate that the adaptive mutation rate to repression is a critical parameter that influences both the evolutionary trajectory of host repression and the associated proliferation of TEs after invasion in simulated populations. Our findings suggest that adaptive evolution of TE regulation may be stronger and more prevalent than previously appreciated, and provide a framework for interpreting empirical data.


Assuntos
Evolução Biológica , Elementos de DNA Transponíveis , Modelos Genéticos , Animais , Simulação por Computador , Drosophila melanogaster , Feminino , Masculino , Interferência de RNA
18.
Genome Biol Evol ; 10(4): 1039-1047, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29617801

RESUMO

Biases in mutation rate can influence molecular evolution, yielding rates of evolution that vary widely in different parts of the genome and even among neighboring nucleotides. Here, we explore one possible mechanism of influence on sequence-specific mutation rates, the electron-hole, which can localize and potentially trigger a replication mismatch. A hole is a mobile site of positive charge created during one-electron oxidation by, for example, radiation, contact with a mutagenic agent, or oxidative stress. Its quantum wavelike properties cause it to localize at various sites with probabilities that vary widely, by orders of magnitude, and depend strongly on the local sequence. We find significant correlations between hole probabilities and mutation rates within base triplets, observed in published mutation accumulation experiments on four species of bacteria. We have also computed hole probability spectra for hypervariable segment I of the human mtDNA control region, which contains several mutational hotspots, and for heptanucleotides in noncoding regions of the human genome, whose polymorphism levels have recently been reported. We observe significant correlations between hole probabilities, and context-specific mutation and substitution rates. The correlation with hole probability cannot be explained entirely by CpG methylation in the heptanucleotide data. Peaks in hole probability tend to coincide with mutational hotspots, even in mtDNA where CpG methylation is rare. Our results suggest that hole-enhanced mutational mechanisms, such as oxidation-stabilized tautomerization and base deamination, contribute to molecular evolution.


Assuntos
Replicação do DNA/genética , DNA Mitocondrial/genética , Evolução Molecular , Genoma Humano/genética , Sequência de Bases/genética , Ilhas de CpG/genética , Elétrons , Humanos , Mutagênese , Taxa de Mutação
19.
Proc Biol Sci ; 274(1619): 1741-50, 2007 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-17472908

RESUMO

The evolution of life on earth has been characterized by generalized long-term increases in phenotypic complexity. Although natural selection is a plausible cause for these trends, one alternative hypothesis--generative bias--has been proposed repeatedly based on theoretical considerations. Here, we introduce a computational model of a developmental system and use it to test the hypothesis that long-term increasing trends in phenotypic complexity are caused by a generative bias towards greater complexity. We use our model to generate random organisms with different levels of phenotypic complexity and analyse the distributions of mutational effects on complexity. We show that highly complex organisms are easy to generate but there are trade-offs between different measures of complexity. We also find that only the simplest possible phenotypes show a generative bias towards higher complexity, whereas phenotypes with high complexity display a generative bias towards lower complexity. These results suggest that generative biases alone are not sufficient to explain long-term evolutionary increases in phenotypic complexity. Rather, our finding of a generative bias towards average complexity argues for a critical role of selective biases in driving increases in phenotypic complexity and in maintaining high complexity once it has evolved.


Assuntos
Evolução Biológica , Modelos Teóricos , Fenótipo , Seleção Genética , Divisão Celular , Linhagem da Célula , Simulação por Computador , Expressão Gênica , Genótipo , Mutação/genética
20.
Genetics ; 206(1): 377-388, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28007889

RESUMO

Genetic incompatibilities can emerge as a byproduct of genetic divergence. According to Dobzhansky and Muller, an allele that fixes in one population may be incompatible with an allele at a different locus in another population when the two alleles are brought together in hybrids. Orr showed that the number of Dobzhansky-Muller incompatibilities (DMIs) should accumulate faster than linearly-i.e., snowball-as two lineages diverge. Several studies have attempted to test the snowball effect using data from natural populations. One limitation of these studies is that they have focused on predictions of the Orr model, but not on its underlying assumptions. Here, we use a computational model of RNA folding to test both predictions and assumptions of the Orr model. Two populations are allowed to evolve in allopatry on a holey fitness landscape. We find that the number of inviable introgressions (an indicator for the number of DMIs) snowballs, but does so more slowly than expected. We show that this pattern is explained, in part, by the fact that DMIs can disappear after they have arisen, contrary to the assumptions of the Orr model. This occurs because DMIs become progressively more complex (i.e., involve alleles at more loci) as a result of later substitutions. We also find that most DMIs involve >2 loci, i.e., they are complex. Reproductive isolation does not snowball because DMIs do not act independently of each other. We conclude that the RNA model supports the central prediction of the Orr model that the number of DMIs snowballs, but challenges other predictions, as well as some of its underlying assumptions.


Assuntos
Biologia Computacional , Aptidão Genética , Especiação Genética , Dobramento de RNA/genética , Evolução Biológica , Simulação por Computador , Genética Populacional , Modelos Genéticos , Isolamento Reprodutivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA