Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev E ; 106(4-1): 044303, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397593

RESUMO

In social networks, the balance theory has been studied by considering either the triple interactions between the links (structural balance) or the triple interaction of nodes and links (coevolutionary balance). In the structural balance theory, the links are not independent from each other, implying a global effect of this term and it leads to a discontinuous phase transition in the system's balanced states as a function of temperature. However, in the coevolutionary balance the links only connect two local nodes and a continuous phase transition emerges. In this paper, we consider a combination of both to understand which of these types of interactions will identify the stability of the network. We are interested to see how adjusting the robustness of each term versus the other might affect the system to reach a balanced state. We use statistical mechanics methods and the mean-field theory and also the Monte Carlo numerical simulations to investigate the behavior of the order parameters and the total energy of the system. We find the phase diagram of the system which demonstrates the competition of these two terms at different ratios against each other and different temperatures. The system shows a tricritical point above which the phase transition switches from continuous to discrete. Also the superiority of the local perspective is observed at low temperatures and the global view will be the dominant term in determining the stability of the system at higher temperatures.

2.
Phys Rev E ; 99(2-1): 022312, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30934300

RESUMO

We introduce a k-leaf removal algorithm as a generalization of the so-called leaf removal algorithm. In this pruning algorithm, vertices of degree smaller than k, together with their first nearest neighbors and all incident edges, are progressively removed from a random network. As the result of this pruning the network is reduced to a subgraph which we call the Generalized k-core (Gk-core). Performing this pruning for the sequence of natural numbers k, we decompose the network into a hierarchy of progressively nested Gk-cores. We present an analytical framework for description of Gk-core percolation for undirected uncorrelated networks with arbitrary degree distributions (configuration model). To confirm our results, we also derive rate equations for the k-leaf removal algorithm which enable us to obtain the structural characteristics of the Gk-cores in another way. Also we apply our algorithm to a number of real-world networks and perform the Gk-core decomposition for them.

3.
Phys Rev E ; 95(2-1): 022314, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28297881

RESUMO

Most studies of disease spreading consider the underlying social network as obtained without the contagion, though epidemic influences people's willingness to contact others: A "friendly" contact may be turned to "unfriendly" to avoid infection. We study the susceptible-infected disease-spreading model on signed networks, in which each edge is associated with a positive or negative sign representing the friendly or unfriendly relation between its end nodes. In a signed network, according to Heider's theory, edge signs evolve such that finally a state of structural balance is achieved, corresponding to no frustration in physics terms. However, the danger of infection affects the evolution of its edge signs. To describe the coupled problem of the sign evolution and disease spreading, we generalize the notion of structural balance by taking into account the state of the nodes. We introduce an energy function and carry out Monte Carlo simulations on complete networks to test the energy landscape, where we find local minima corresponding to the so-called jammed states. We study the effect of the ratio of initial friendly to unfriendly connections on the propagation of disease. The steady state can be balanced or a jammed state such that a coexistence occurs between susceptible and infected nodes in the system.

4.
Phys Rev E ; 95(2-1): 022409, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28297983

RESUMO

Memory has a great impact on the evolution of every process related to human societies. Among them, the evolution of an epidemic is directly related to the individuals' experiences. Indeed, any real epidemic process is clearly sustained by a non-Markovian dynamics: memory effects play an essential role in the spreading of diseases. Including memory effects in the susceptible-infected-recovered (SIR) epidemic model seems very appropriate for such an investigation. Thus, the memory prone SIR model dynamics is investigated using fractional derivatives. The decay of long-range memory, taken as a power-law function, is directly controlled by the order of the fractional derivatives in the corresponding nonlinear fractional differential evolution equations. Here we assume "fully mixed" approximation and show that the epidemic threshold is shifted to higher values than those for the memoryless system, depending on this memory "length" decay exponent. We also consider the SIR model on structured networks and study the effect of topology on threshold points in a non-Markovian dynamics. Furthermore, the lack of access to the precise information about the initial conditions or the past events plays a very relevant role in the correct estimation or prediction of the epidemic evolution. Such a "constraint" is analyzed and discussed.


Assuntos
Evolução Biológica , Epidemias , Memória , Modelos Biológicos , Humanos , Dinâmica não Linear , Fatores de Tempo
5.
Phys Rev E ; 93: 042303, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27176308

RESUMO

The spread of one disease, in some cases, can stimulate the spreading of another infectious disease. Here, we treat analytically a symmetric coinfection model for spreading of two diseases on a two-layer multiplex network. We allow layer overlapping, but we assume that each layer is random and locally loopless. Infection with one of the diseases increases the probability of getting infected with the other. Using the generating function method, we calculate exactly the fraction of individuals infected with both diseases (so-called coinfected clusters) in the stationary state, as well as the epidemic spreading thresholds and the phase diagram of the model. With increasing cooperation, we observe a tricritical point and the type of transition changes from continuous to hybrid. Finally, we compare the coinfected clusters in the case of cooperating diseases with the so-called "viable" clusters in networks with dependencies.


Assuntos
Epidemias , Modelos Teóricos , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Probabilidade
6.
Artigo em Inglês | MEDLINE | ID: mdl-25314490

RESUMO

We generalize the theory of k-core percolation on complex networks to k-core percolation on multiplex networks, where k≡(k(1),k(2),...,k(M)). Multiplex networks can be defined as networks with vertices of one kind but M different types of edges, representing different types of interactions. For such networks, the k-core is defined as the largest subgraph in which each vertex has at least k(i) edges of each type, i=1,2,...,M. We derive self-consistency equations to obtain the birth points of the k-cores and their relative sizes for uncorrelated multiplex networks with an arbitrary degree distribution. To clarify our general results, we consider in detail multiplex networks with edges of two types and solve the equations in the particular case of Erdos-Rényi and scale-free multiplex networks. We find hybrid phase transitions at the emergence points of k-cores except the (1,1)-core for which the transition is continuous. We apply the k-core decomposition algorithm to air-transportation multiplex networks, composed of two layers, and obtain the size of (k(1),k(2))-cores.


Assuntos
Modelos Teóricos , Aeronaves , Algoritmos , Transição de Fase
7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 052809, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25493836

RESUMO

We describe the complex global structure of giant components in directed multiplex networks that generalizes the well-known bow-tie structure, generic for ordinary directed networks. By definition, a directed multiplex network contains vertices of one type and directed edges of m different types. In directed multiplex networks, we distinguish a set of different giant components based on the existence of directed paths of different types between their vertices such that for each type of edges, the paths run entirely through only edges of that type. If, in particular, m=2, we define a strongly viable component as a set of vertices in which for each type of edges each two vertices are interconnected by at least two directed paths in both directions, running through the edges of only this type. We show that in this case, a directed multiplex network contains in total nine different giant components including the strongly viable component. In general, the total number of giant components is 3^{m}. For uncorrelated directed multiplex networks, we obtain exactly the size and the emergence point of the strongly viable component and estimate the sizes of other giant components.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(4 Pt 2): 046115, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19905398

RESUMO

We study critical properties of the continuous Abelian sandpile model with anisotropies in toppling rules that produce ordered patterns on it. Also, we consider the continuous directed sandpile model perturbed by a weak quenched randomness, study critical behavior of the model using perturbative conformal field theory, and show that the model has a random fixed point.


Assuntos
Algoritmos , Modelos Teóricos , Reologia/métodos , Dióxido de Silício , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA