RESUMO
Vibrio sp. PBL-C16 is a bacterium that was isolated from Batu Laut Beach in Selangor, Malaysia. Here, we present a high-quality annotated draft genome of strain PBL-C16 and suggest its potential glycoside hydrolase enzymes for polysaccharide degradation.
RESUMO
The fabrication of molecular electronics from non-toxic functional materials which eventually would potentially able to degrade or being breaking down into safe by-products have attracted much interests in recent years. Hence, in this study, the introduction of mixed highly functional substructures of chalcone (-CO-CH=CH-) and ethynylated (C≡C) as building blocks has shown ideal performance as solution-processed thin film candidatures. Two types of derivatives, (MM-3a) and (MM-3b) repectively, showed a substantial Stokes shifts at 75 nm and 116 nm, in which such emission exhibits an intramolecular charge transfer (ICT) state and fluoresce characteristics. The density functional theory (DFT) simulation shows that MM-3a and MM-3b exhibit low energy gaps of 3.70 eV and 2.81 eV, respectively. TD-DFT computations for molecular electrostatic potential (MEP) and frontier molecular orbitals (FMO) were also used to emphasise the structure-property relationship. A solution-processed thin film with a single layer of ITO/PEDOT:PSS/MM-3a-MM-3b/Au exhibited electroluminescence behaviour with orange and purple emissions when supplied with direct current (DC) voltages. To promote the safer application of the derivatives formed, ethynylated chalcone materials underwent toxicity studies toward Acanthamoeba sp. to determine their suitability as non-toxic molecules prior to the determination as safer materials in optical limiting interests. From the preliminary test, no IC50 value was obtained for both compounds via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay analysis and molecular docking analysis between MM-3a and MM-3b, with profilin protein exhibited weak bond interactions and attaining huge interaction distances.
RESUMO
Colorectal cancer (CRC) is ranked as the second leading cause of mortality worldwide, mainly due to metastasis. Epithelial to mesenchymal transition (EMT) is a complex cellular process that drives CRC metastasis, regulated by changes in EMT-associated gene expression. However, while numerous genes have been identified as EMT regulators through various in vivo and in vitro studies, little is known about the genes that are differentially expressed in CRC tumour tissue and their signalling pathway in regulating EMT. Using an integration of systematic search and bioinformatic analysis, gene expression profiles of CRC tumour tissues were compared to non-tumour adjacent tissues to identify differentially expressed genes (DEGs), followed by performing systematic review on common identified DEGs. Fifty-eight common DEGs were identified from the analysis of 82 tumour tissue samples obtained from four gene expression datasets (NCBI GEO). These DEGS were then systematically searched for their roles in modulating EMT in CRC based on previously published studies. Following this, 10 common DEGs (CXCL1, CXCL8, MMP1, MMP3, MMP7, TACSTD2, VIP, HPGD, ABCG2, CLCA4) were included in this study and subsequently subjected to further bioinformatic analysis. Their roles and functions in modulating EMT in CRC were discussed in this review. This study enhances our understanding of the molecular mechanisms underlying EMT and uncovers potential candidate genes and pathways that could be targeted in CRC.