Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16783, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798317

RESUMO

This contribution reports, for the first time, on an entirely green bio-engineering approach for the biosynthesis of single phase crystalline 1-D nano-scaled calcite CaCO3. This was validated using H2O as the universal solvent and natural extract of Hyphaene thebaica fruit as an effective chelating agent. In this room temperature green process, CaCl2 and CO2 are used as the unique source of Ca and CO3 respectively in view of forming nano-scaled CaCO3 with a significant shape anisotropy and an elevated surface to volume ratio. In terms of novelty, and relatively to the reported scientific and patented literature in relation to the fabrication of CaCO3 by green nano-chemistry, the current cost effective room temperature green process can be singled out as per the following specificities: only water as universal solvent is used, No additional base or acid chemicals for pH control, No additional catalyst, No critical or supercritical CO2 usage conditions, Only natural extract of thebaica as a green effective chelating agent through its phytochemicals and proper enzematic compounds, room Temperature processing, atmospheric pressure processing, Nanoscaled size particles, and Nanoparticles with a significant shape anisotropy (1-D like nanoparticles). Beyond and in addition to the validation of the 1-D synthesis aspect, the bio-engineered CaCO3 exhibited a wide-ranging functionalities in terms of highly reflecting pigment, an effective nanofertilizer as well as a potential binder in cement industry.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 2495-2498, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440914

RESUMO

The aim of this study was to assess neuroplasticity that occurred in the corticospinal tract (CST) following antigravity treadmill (AlterG) training. AlterG can facilitate walking by having up to an 80% reduction of weight-bearing in patients. Systematic and intensive gait training for sufficient periods of time may lead to neuroplasticity and walking capacity improvement. AlterG gait training was done for eight weeks, 3 sessions per week, and 45 minutes each session. Three cerebral palsy (CP) children participated in this study. The function and structure of CST on the brain's more affected side were evaluated using Transcranial Magnetic Stimulation (TMS) and Diffusion Tensor Imaging (DTI). Also, some common clinical tests were performed to evaluate walking capacity and endurance. DTI features such as fractional anisotropy (FA) and mean diffusivity (MD) as well as some TMS features were extracted to estimate structural changes of the CST. The evaluations were performed before and after 8week AlterG training. The results showed an improvement in the DTI metrics of the CST following AlterG training. Also, TMS parameters were improved and these changes in CST function and structure were concurrent with changes in walking capacity. These results suggest that AlterG training can be used as a therapeutic tool to provide an effective and persistent gait improvement in CP children.


Assuntos
Paralisia Cerebral , Plasticidade Neuronal , Tratos Piramidais , Paralisia Cerebral/terapia , Criança , Imagem de Tensor de Difusão , Teste de Esforço , Humanos
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 2499-2502, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440915

RESUMO

We aimed to investigate the effects of an antigravity treadmill (AlterG) on the balance and structure of the vestibulospinal tract. The AlterG can reduce the weightbearing of patients and hence can facilitate their locomotion. Three children with cerebral palsy (CP) received AlterG training three days per week for eight weeks with each session lasting 45 minutes. The balance of children was evaluated using the Berg balance test and the Timed Up and Go (TUG) test. The diffusion tensor imaging (DTI) method was employed to quantify changes of the structure of the vestibulospinal tract. Evaluations were performed before and after the 8-week training. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD) were measured to evaluate the vestibulospinal tract structure. The results showed that the mean FA of the vestibulospinal tract increased and other metrics decreased for all subjects. Our findings indicated that the balance and structure of the vestibulospinal tract were improved up to 30% for all children following the 8-week AlterG training. This indicates that the balance improvement of the CP children following the AlterG training was accompanied with persistent neuroplasticity in their brain. The clinical implication is that the AlterG training has a potential to be used as an effective therapeutic tool for the treatment of balance impairment in CP children.


Assuntos
Paralisia Cerebral , Substância Branca , Anisotropia , Encéfalo , Paralisia Cerebral/terapia , Criança , Imagem de Tensor de Difusão , Humanos
4.
IEEE Int Conf Rehabil Robot ; 2017: 101-105, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28813801

RESUMO

We evaluated the therapeutic effects of anti-gravity locomotor treadmill (AlterG) training on postural stability in children with Cerebral Palsy (CP) and spasticity, particularly in the lower extremity. AlterG can facilitate walking by reducing the weight of CP children by up to 80%; it can also help subjects maintain an appropriate posture during the locomotor AlterG training. Thus, we hypothesized that AlterG training, for a sufficient period of time, has a potential to produce cerebellum neuroplasticity, and consequently result in an effective permanent postural stability. AlterG training was given for 45 minutes, three times a week for two months. Postural balance was evaluated using posturography. The parameters of the Romberg based posturography were extracted to quantify the Center of Balance (CoP). The neuroplasticity of Cerebellum was evaluated using a Diffusion Tensor Imaging (DTI). The evaluations were done pre- and post-training. The Fractional Anisotropy (FA) feature was used for quantifying structural changes in the cerebellum. The results showed that AlterG training resulted in an increase in average FA value of the cerebellum white matter following the training. The results of the posturography evaluations showed a consistent improvement in postural stability. These results were consistent in all subjects. Our findings indicated that the improvement in the posture was accompanied with the enhancement of the cerebellum white matter structure. The clinical implication is that AlterG training can be considered a therapeutic tool for an effective and permanent improvement of postural stability in CP children.


Assuntos
Cerebelo , Paralisia Cerebral/reabilitação , Modalidades de Fisioterapia , Cerebelo/anatomia & histologia , Cerebelo/diagnóstico por imagem , Cerebelo/fisiologia , Criança , Imagem de Tensor de Difusão , Feminino , Gravitação , Humanos , Masculino , Plasticidade Neuronal/fisiologia , Equilíbrio Postural , Processamento de Sinais Assistido por Computador , Caminhada/fisiologia
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1150-1153, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060079

RESUMO

We studied the effects of an anti-gravity treadmill (AlterG) training on walking capacity and corticospinal tract structure in children with Cerebral Palsy (CP). AlterG can help CP children walk on the treadmill by reducing their weights up to 80% and maintain their balance during locomotion. AlterG training thus has the potential to improve walking capacity permanently as it can provide systematic and intense locomotor training for sufficiently long period of time and produce brain neuroplasticity. AlterG training was given for 45 minutes, three times a week for two months. The neuroplasticity of corticospinal tract was evaluated using Diffusion Tensor Imaging (DTI). The fractional Anisotropy (FA) feature was extracted to quantify structural changes of the corticospinal tract. Walking capacity was evaluated using popular clinical measurements of gait; i.e., walking speed, mobility and balance. The evaluations were done before and after training. Our results revealed that AlterG training resulted in an increase in average FA value of the corticospinal tract following the training. The outcome measures of clinical assessments of gait presented enhanced walking capacity of the CP subjects. Our findings indicated that the improved walking capacity was concurrent with the enhancement of the corticospinal tract structure. The clinical implication is that AlterG training may be considered as a therapeutic tool for permanent gait improvement in CP children.


Assuntos
Caminhada , Paralisia Cerebral , Criança , Imagem de Tensor de Difusão , Teste de Esforço , Terapia por Exercício , Humanos , Tratos Piramidais
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 5473-5476, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28269496

RESUMO

We studied the correlation between corticospinal signaling and neuromuscular properties in children with Cerebral Palsy (CP). Corticospinal signaling was evaluated using Transcranial Magnetic Stimulation (TMS). Neuromuscular properties were quantified using Hoffmann reflex (H-reflex), sonoelastography, clinical measurements, and isokinetic measures. In particular, we determined the relationship between the TMS parameters of the ankle joint and the neuromuscular features of ankle extensors and flexors as well as popular clinical measures of gait speed, endurance, balance and mobility. Seventeen CP patients and twelve healthy control subjects were evaluated. Our findings showed that the motor evoked potential (MEP) latency of TMS was significantly longer in CP than in healthy subjects. The MEP-latency was significantly correlated with the H-reflex response (r=0.71, p-value=0.04) and isokinetic features; i.e. max acceleration extension time (r=0.5, p-value=0.005), and max flexion time in the cycle (r=0.5, p-value =0.002). No significant correlation was observed between MEP-latency and clinical measurements of gait and sonoelastography of ankle muscles. The results suggest that the changes in corticospinal signaling could contribute to muscle weakness and hyperexcitability of reflexes observed in children with CP.


Assuntos
Paralisia Cerebral/fisiopatologia , Potencial Evocado Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Articulação do Tornozelo/fisiopatologia , Criança , Marcha/fisiologia , Humanos
7.
J Environ Sci Eng ; 56(3): 319-26, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26563084

RESUMO

The constructed wetlands as well engineered techniques have been used effectively for phytoremediation of wastewater and pollution control during the last decades. In these technologies, the naturally occurring processes of plants alongside micro-organisms present in the bio-film attached to the roots, soil substrate and water column degrade the organic pollutants. The study seeks to compare the potential use of Phragmites sp. reed bed and floating macrophyte water hyacinth (Eichhornia crassipes) system for domestic wastewater treatment. The sewage treatment performance is evaluated as 80% & 76% chemical oxygen demand (COD), 90% & 87% biological oxygen demand (BOD5), 24% & 18% total dissolved solids (TDS), 69% & 67% total suspended solids (TSS), 12% & 5% Chlorides, 73% & 69% ammonia nitrogen (NH3-N), 42% & 31% phosphate (PO4-P), 93% & 91% most probable number (MPN) and 95% & 92% total viable count (TVC) reduction at optimum hydraulic retention time (HRT) of 24 & 43 h in Phragmites sp. and water hyacinth systems, respectively. Likewise, the floating macrophyte pond contrary to reed bed process shows insignificant pollutant diminution at 24 h HRT. This paper also highlights the microbial population present through the wetland systems by estimation of total viable count (TVC). The botanical aspect with reference to the plant growth is shown a significant increase in vegetation yield. The overall studies indicate the better treatment efficiency by preferred Phragmites sp. root zone system at low foot print area for domestic wastewater.


Assuntos
Biodegradação Ambiental , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos , Eichhornia , Poaceae , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA