Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Clin Oral Investig ; 23(11): 3959-3966, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30847574

RESUMO

OBJECTIVES: This study aimed to differentiate and characterize fibroblast-like cells from stem cells from human exfoliated deciduous teeth (SHED). MATERIALS AND METHODS: The differentiation of fibroblast-like cells from SHED was carried out by using specific human recombinant connective tissue growth factor (CTGF). To characterize fibroblastic differentiation, the induced cells were subjected to morphological changes, proliferation rate, gene expression analysis using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), flow cytometry, and immunofluorescence staining. The commercial primary human gingival fibroblasts served as positive control in this study. RESULTS: The results from characterization analysis were compared with that of commercial cells to ensure that the cells differentiated from SHED were fibroblast-like cells. The results showed the inductive effect of CTGF for fibroblastic differentiation in SHED. SHED-derived fibroblasts were successfully characterized despite having similar morphological appearance, i.e., (i) significant proliferation rate between fibroblast-like cells and SHED, (ii) high expression of fibroblast-associated markers in qRT-PCR analysis, and (iii) positive staining against collagen type 1, fibroblast-specific protein 1, and human thymic fibroblasts in flow cytometry analysis and immunofluorescence staining. The same expression patterns were found in primary human gingival fibroblasts, respectively. SHED as negative control showed lower expression or no signal, thus confirming the cells differentiated from SHED were fibroblast-like cells. CONCLUSIONS: Taken together, the protocol adopted in this study suggests CTGF to be an appropriate inducer in the differentiation of SHED into fibroblast-like cells. CLINICAL RELEVANCE: The fibroblast-like cells differentiated from SHED could be used in future in vitro and in vivo dental tissue regeneration studies as well as in clinical applications where these cells are needed.


Assuntos
Diferenciação Celular , Proliferação de Células , Fibroblastos , Células-Tronco , Dente Decíduo , Células Cultivadas , Citometria de Fluxo , Humanos
3.
J Mov Disord ; 17(2): 213-217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38291878

RESUMO

Lysosomal dysfunction plays an important role in neurodegenerative diseases, including Parkinson's disease (PD) and possibly Parkinson-plus syndromes such as progressive supranuclear palsy (PSP). This role is exemplified by the involvement of variants in the GBA1 gene, which results in a deficiency of the lysosomal enzyme glucocerebrosidase and is the most frequently identified genetic factor underlying PD worldwide. Pathogenic variants in the SMPD1 gene are a recessive cause of Niemann-Pick disease types A and B. Here, we provide the first report on an association between a loss-of-function variant in the SMPD1 gene present in a heterozygous state (p.Pro332Arg/p.P332R, which is known to result in reduced lysosomal acid sphingomyelinase activity), with PSP-Richardson syndrome in three unrelated patients of Chinese ancestry.

4.
medRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38529492

RESUMO

Until recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at global scale. The first systematic approach to embrace monogenic PD worldwide, The Michael J. Fox Foundation Global Monogenic PD (MJFF GMPD) Project, contacted authors of publications reporting individuals carrying pathogenic variants in known PD-causing genes. In contrast, the Global Parkinson's Genetics Program's (GP2) Monogenic Network took a different approach by targeting PD centers not yet represented in the medical literature. Here, we describe combining both efforts in a "merger project" resulting in a global monogenic PD cohort with build-up of a sustainable infrastructure to identify the multi-ancestry spectrum of monogenic PD and enable studies of factors modifying penetrance and expression of monogenic PD. This effort demonstrates the value of future research based on team science approaches to generate comprehensive and globally relevant results.

5.
PLoS One ; 18(4): e0283995, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37027451

RESUMO

Xerostomia is a subjective condition of dryness of the oral cavity that may lead to several oral problems deteriorating oral health-related quality of life. This study aimed to (1) determine the prevalence of xerostomia, (2) compare the general health status, unstimulated salivary flow rate, and oral health-related quality of life in xerostomics and non-xerostomics, and (3) investigate the potential of salivary aquaporin-3 (AQP-3) as a screening biomarker for xerostomia in patients with periodontal disease. Demographics and systemic health data were collected from 109 healthy participants, 20 to 55 years old, with Community Periodontal Index (CPI) score ≥ 3. For subjective assessment of xerostomia, Shortened Xerostomia Inventory (SXI) was used. For objective assessment of xerostomia, unstimulated salivary flow rate was measured. Shortened Oral Health Impact Profile (S-OHIP) was utilized for oral health-related quality of life assessment. The collected saliva samples were processed and stored at -80°C. Quantification of salivary AQP-3 protein was done with enzyme-linked immunosorbent assay. Xerostomia was reported in 78% of the subjects based on SXI score. Median concentration of AQP-3 was significantly higher in xerostomics compared to non-xerostomics, p = 0.001. Moreover, oral health-related quality of life was significantly poor in xerostomics compared to non-xerostomics, p = 0.002. Furthermore, there were significant correlations between AQP-3 and SXI (r = 0.21, p = 0.025), AQP-3 and S-OHIP (r = 0.2, p = 0.042), S-OHIP and SXI (r = 0.37, p < 0.001), unstimulated salivary flow rate and random blood glucose level (r = 0.32, p = 0.001), and body mass index and mean arterial pressure (r = 0.44, p < 0.001). Regression analysis showed that body mass index, CPI score 3, and salivary AQP-3 were suitable predictors for presence of xerostomia. AQP-3 could be a potential screening biomarker for xerostomia in patients with periodontal disease for its early identification may help improve oral health-related quality of life of the individuals.


Assuntos
Aquaporina 3 , Aquaporinas , Doenças Periodontais , Xerostomia , Adulto , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Aquaporinas/metabolismo , Doenças Periodontais/epidemiologia , Qualidade de Vida , Saliva/química , Xerostomia/diagnóstico , Xerostomia/epidemiologia , Aquaporina 3/análise , Saúde Bucal
6.
PLoS One ; 18(4): e0283922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018321

RESUMO

Current immunological issues in bone grafting regarding the transfer of xenogeneic donor bone cells into the recipient are challenging the industry to produce safer acellular natural matrices for bone regeneration. The aim of this study was to investigate the efficacy of a novel decellularization technique for producing bovine cancellous bone scaffold and compare its physicochemical, mechanical, and biological characteristics with demineralized cancellous bone scaffold in an in-vitro study. Cancellous bone blocks were harvested from a bovine femoral head (18-24 months old) subjected to physical cleansing and chemical defatting, and further processed in two ways. Group I was subjected to demineralization, while Group II underwent decellularization through physical, chemical, and enzymatic treatments. Both were then freeze-dried, and gamma radiated, finally producing a demineralized bovine cancellous bone (DMB) scaffold and decellularized bovine cancellous bone (DCC) scaffold. Both DMB and DCC scaffolds were subjected to histological evaluation, scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), fourier-transform infrared spectroscopy (FTIR), quantification of lipid, collagen, and residual nucleic acid content, and mechanical testing. The osteogenic potential was investigated through the recellularization of scaffolds with human osteoblast cell seeding and examined for cell attachment, proliferation, and mineralization by Alizarin staining and gene expression. DCC produced a complete acellular extracellular matrix (ECM) with the absence of nucleic acid content, wider pores with extensive interconnectivity and partially retaining collagen fibrils. DCC demonstrated a higher cell proliferation rate, upregulation of osteogenic differentiation markers, and substantial mineralized nodules production. Our findings suggest that the decellularization technique produced an acellular DCC scaffold with minimal damage to ECM and possesses osteogenic potential through the mechanisms of osteoconduction, osteoinduction, and osteogenesis in-vitro.


Assuntos
Ácidos Nucleicos , Osteogênese , Animais , Bovinos , Humanos , Lactente , Pré-Escolar , Osteogênese/fisiologia , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Osso Esponjoso , Colágeno , Diferenciação Celular
7.
PLoS One ; 18(12): e0294291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127838

RESUMO

The aim of this study was to compare the ability of demineralized (DMB) and decellularized (DCC) bovine bone granules to support bone regeneration in rat calvaria critical-size defects. DMB and DCC were prepared using a previously published method. The granule size used ranged between 500 and 750 µm. A total of forty-eight Sprague-Dawley rats were divided into two groups (n = 24). A pair of 5 mm diameter defects were created on the calvaria of the rats in the right and left parietal bone in both groups. Group A animals received DMB granules and Group B received DCC granules in the right parietal defect side while the left parietal untreated defect acted as sham surgery for both groups. Four animals per group were euthanized in a CO2 chamber at day 7, 14 and 21 post-surgery and the calvaria implantation site biopsy harvested was subjected to osteogenic gene expression analysis. Another four animals per group were euthanized at days 15, 30 and 60 post surgery and the calvaria implantation site biopsy harvested was subjected to histological, immunohistochemistry, RAMAN spectroscopy and Micro-CT analysis at the mentioned time points. Statistical analysis was conducted using t-tests and ANOVA. Histomorphometry showed significantly higher new bone formation in the DCC sites (p<0.05) compared to DMB. Both DMB and DCC implantation sites showed distinct staining for osteocalcin and osteopontin proteins compared to their respective sham sites. By day 21 after implantation, DCC sites demonstrated significantly elevated mRNA levels of osteonectin (p<0.001), osteopontin (p<0.001), osteocalcin (p<0.0001), ALP (p<0.01), and BMP-2 (p<0.001) compared to DMB. However, VEGF expression showed no significant differences at this time point between the two groups. Micro-CT analysis also showed enhanced defect closure and higher bone density in DCC implanted sites while RAMAN spectra demonstrated increased abundance of collagen and bone minerals, especially, PO43- ions than DMB. In conclusion, both DMB and DCC granules demonstrated favorable osteogenic potential in critical-sized defects, with DCC exhibited superior osteoconductive, osteoinductive and osteogenesis properties.


Assuntos
Osteogênese , Osteopontina , Ratos , Animais , Bovinos , Ratos Sprague-Dawley , Osteopontina/genética , Osteocalcina , Crânio/patologia , Regeneração Óssea , Minerais
8.
Biol Cell ; 103(2): 69-86, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21138418

RESUMO

BACKGROUND INFORMATION: AQPs (aquaporins) are water channel proteins that are expressed in almost all living things. In mammalians, 13 members of AQPs (AQP0-12) have been identified so far. AQP5 is known to be expressed mostly in the exocrine cells, including the salivary gland acinar cells. A naturally occurring point mutation (G308A, Gly103 > Asp103) was earlier found in the rat AQP5 gene [Murdiastuti, Purwanti, Karabasil, Li, Yao, Akamatsu, Kanamori and Hosoi (2006) Am. J. Physiol. 291, G1081-G1088]; in this mutant, the rate of initial saliva secretion under stimulated and unstimulated conditions is less than that for the wt (wild-type) animals. RESULTS: Here the mutant molecule was characterized in detail. Using the Xenopus oocyte system, we demonstrated the mutant AQP5 to have water permeability almost the same as that of the wt molecule. Mutant and wt AQP5s, tagged with GFP (green fluorescent protein; GFP-AQP5s) and expressed in polarized MDCK-II (Madin-Darby canine kidney II) cells, first appeared in the vesicular structure(s) in the cytoplasm, and were translocated to the upper plasma membrane or apical membrane during cultivation, with the mutant GFP-AQP5 being translocated less efficiently. Thapsigargin and H-89 both induced translocation in vitro of either molecule, whereas colchicine inhibited this activity; the fraction of cells showing apical localization of mutant GFP-AQP5 was less than that showing that of the wt molecule under any of the experimental conditions used. In the mutant SMG (submandibular gland) tissue, localization of AQP5 in the apical membrane of acinar cells was extremely reduced. Vesicular structures positive for AQP5 and present in the cytoplasm of the acinar cells were co-localized with LAMP2 (lysosome-associated membrane protein 2) or cathepsin D in the mutant gland, whereas such co-localizations were very rare in the wt gland, suggesting that the mutant molecules largely entered lysosomes for degradation. CONCLUSION: Replacement of highly conserved hydrophobic Gly103 with strongly hydrophilic Asp103 in rat AQP5, though it did not affect water permeability, may possibly have resulted in less efficient membrane trafficking and increased lysosomal degradation, leading to its lower expression in the apical membrane of the acinar cells in the SMG.


Assuntos
Aquaporina 5/genética , Aquaporina 5/metabolismo , Mutação Puntual , Glândula Submandibular/metabolismo , Água/metabolismo , Sequência de Aminoácidos , Animais , Aquaporina 5/química , Linhagem Celular , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Cães , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Permeabilidade , Transporte Proteico , Ratos , Alinhamento de Sequência , Glândula Submandibular/química , Xenopus
9.
Curr Stem Cell Res Ther ; 17(5): 466-479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35189800

RESUMO

BACKGROUND: The migration and differentiation of stem cells take place during the reparative phase of the healing cascade. Chemokine ligands and receptors are the key players in the homing process during the early stage of capillary morphogenesis. Stem cells from exfoliated deciduous teeth are known to possess a huge potential benefit for tissue regeneration. However, the gene expression of SHED engaging in angiogenesis and migratory activity during tissue healing is not fully understood. This study aims to assess the gene expression of SHED following in-vitro angiogenesis and migratory induction protocol. METHODS: Scratch test assay was conducted following an angiogenic induction of SHED by supplementation of EGM-2 and VEGF. For the detection of migratory cell markers, angiogenic markers, and stem cell markers, RNA samples were extracted on days 1, 3, 7, 10, and 14 after the angiogenic induction in a transwell chamber, followed by RT-PCR analysis. RESULTS: The findings suggested that SHED formed endothelial cells at higher capacity under an immature state with higher seeding density. SHED undergoing angiogenesis and migratory activity showed elevated IL-8, CCR1, CXCR4, and CCL28 expression. CCR1 expression significantly increased in the A+M+ group (p<0.05). CONCLUSION: The gene expression of these chemokines, particularly CCR1, which closely represent cellular migration, suggests the potential use of SHED for cell-based therapy to enhance tissue repair.


Assuntos
Células Endoteliais , Dente Decíduo , Diferenciação Celular/genética , Células Cultivadas , Expressão Gênica , Humanos , Morfogênese , Células-Tronco
10.
J Taibah Univ Med Sci ; 17(4): 630-639, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35983454

RESUMO

Objective: Successful regenerative endodontic procedures in dental treatment are critically associated with complete disinfection of the root canal and require irrigants and medicaments. One factor for consideration is the biocompatibility of the medicament as this can affect the intracanal dentine and subsequently the dental stem cell viability required for the repair of the dentine-pulp complex. This in vitro study investigated the effect of a 4-week treatment of calcium hydroxide [Ca(OH)2] and triple antibiotic paste (TAP) on the irrigated radicular dentine by analysing dentine interaction with dental stem cells. Methods: TAP consists of metronidazole, ciprofloxacin and minocycline. Dentine chips were prepared and treated with either Ca(OH)2 or TAP for 4-weeks, irrigated by 1.5% sodium hypochlorite (NaOCl), rinsed with saline, followed by 17% ethylenediaminetetraacetic acid (EDTA). Dental pulp stem cells (DPSCs) cultured on the surface of the dentine chips were analysed on days 1, 3 and 7 of cell seeding for PrestoBlue viability assays, 6-diamidino-2 phenylindole (DAPI) staining and scanning electron microscopy (SEM). An independent t-test (SPSS software version 24.0) was used to statistically analyse the PrestoBlue assay data. Results: DPSCs grown from dentine treated with TAP showed significantly higher cell viability than the Ca(OH)2 and control groups (p < 0.05). DAPI staining of the seeded DPSCs on the treated dental chips complemented the findings of the viability assay. SEM studies also revealed improvements in the cell spreading and attachment of DPSCs grown on TAP-treated dentine compared with Ca(OH)2. Conclusion: The treatment of dentine with TAP for 4 weeks provided a better microenvironment for the viability and attachment of DPSCs when compared to Ca(OH)2.

11.
Polymers (Basel) ; 14(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215706

RESUMO

The limitations on the use of fluoride therapy in dental caries prevention has necessitated the development of newer preventive agents. This review focusses on the recent and significant studies on P11-4 peptide with an emphasis on different applications in dental hard tissue conditions. The self-assembling peptide P11-4 diffuses into the subsurface lesion assembles into aggregates throughout the lesion, supporting the nucleation of de novo hydroxyapatite nanocrystals, resulting in increased mineral density. P11-4 treated teeth shows more remarkable changes in the lesion area between the first and second weeks. The biomimetic remineralisation facilitated in conjunction with fluoride application is an effective and non-invasive treatment for early carious lesions. Despite, some studies have reported that the P11-4 group had the least amount of remineralised enamel microhardness and a significantly lower mean calcium/phosphate weight percentage ratio than the others. In addition, when compared to a low-viscosity resin, self-assembling peptides could neither inhibit nor mask the lesions significantly. Moreover, when it is combined with other agents, better results can be achieved, allowing more effective biomimetic remineralisation. Other applications discussed include treatment of dental erosion, tooth whitening and dentinal caries. However, the evidence on its true clinical potential in varied dental diseases still remains under-explored, which calls for future cohort studies on its in vivo efficacy.

12.
Pharmacol Rep ; 74(1): 175-188, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34652600

RESUMO

BACKGROUND: The increase in cases of chemoresistance of cisplatin for osteosarcoma treatment has called for the need to establish a new treatment regime. Tannic acid (TA) possesses a potent antiproliferative effect against various cancers. Therefore, this study investigated the effect of TA combined with cisplatin on human osteosarcoma cell lines (U2OS). METHODS: MTT assay was used to determine the half-maximal inhibitory concentration (IC50), while the combination index (CI) value was utilized to analyze the interaction within each combination. The antiproliferative effect of the treatment was evaluated by trypan blue exclusion assay. The morphological changes of cells were observed under a phase-contrast inverted microscope. The nuclear morphology and percentage of apoptosis cells were evaluated by using the Hoechst 33258 staining and annexin V/PI assay, respectively. RESULTS: The U2OS cells showed cytotoxic effect when treated with TA and cisplatin, with IC50 at 4.47 µg/mL and 16.25 µg/mL, respectively. The TA demonstrated no significant inhibition effect on the normal human fetal osteoblast cells (hFOB 1.19); yet, interestingly, a potent proliferative effect was indicated. Synergistic interaction was triggered when TA was combined with cisplatin at percentage ratios of 90:10 and 85:15. Meanwhile, antagonistic interaction was induced in the combination at percentage ratios of 75:25 and 50:50. On the other hand, a significant antiproliferative effect with prominent morphological alteration was detected in the cells treated with a combination of TA and cisplatin at the percentage ratio of 90:10. Additionally, combination-treated cells demonstrated the highest percentage of apoptosis cells, with distinct chromosomal condensation, nuclear fragmentation, reduction of nuclear volume, and notable apoptotic body. CONCLUSION: Therefore, there is a high potential for the inclusion of TA in the cisplatin-based chemotherapeutic regimen of osteosarcoma.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Osteossarcoma , Taninos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Concentração Inibidora 50 , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo
13.
Am J Physiol Cell Physiol ; 301(3): C667-78, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21633078

RESUMO

Aquaporin-5 (AQP5), a water channel, plays key roles in salivary secretion. The novel phosphorylation of AQP5 was investigated by using human salivary gland (HSG) cells and mouse salivary glands. In the HSG cells stably transfected with a wild-type mouse AQP5 construct, a protein band immunoreactive with antibody against phosphorylated PKA substrate was detected in the AQP5 immunoprecipitated sample, and its intensity was enhanced by short-term treatment of the cells with 8-bromo-cAMP, forskolin, or phorbol 12-myristate 13-acetate, but not by that with A23187 calcium ionophore. Such enhancement was inhibited in the presence of H-89, a PKA inhibitor. An AQP5 mutant (AQP5-T259A) expressed by transfection of HSG cells was not recognized by anti-phosphorylated PKA substrate antibody, even when the cells were stimulated with the protein kinase activators. Immunoblotting and immunofluorescence studies using a specific antibody detecting AQP5 phosphorylated at its Thr259 demonstrated that AQP5 was rapidly and transiently phosphorylated at the apical membrane of acinar cells in the submandibular and parotid glands after administration of isoproterenol, but not pilocarpine. Furthermore, both AQP5 and AQP5-T259A were constitutively localized at the plasma membrane in HSG cells under the resting and forskolin-stimulated conditions. These results suggest that AQP5 is phosphorylated at its Thr259 by PKA through cAMP, but not Ca(2+), signaling pathways, and that this phosphorylation does not contribute to AQP5 trafficking in the salivary gland cells.


Assuntos
Aquaporina 5/metabolismo , AMP Cíclico/metabolismo , Glândulas Salivares/metabolismo , Transdução de Sinais/fisiologia , Treonina/metabolismo , Substituição de Aminoácidos/fisiologia , Animais , Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Aquaporina 5/genética , Aquaporina 5/imunologia , Aquaporina 5/isolamento & purificação , Calcimicina/farmacologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Detergentes/química , Humanos , Isoproterenol/farmacologia , Isoquinolinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Glândula Parótida/química , Glândula Parótida/efeitos dos fármacos , Glândula Parótida/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Pilocarpina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Glândulas Salivares/química , Glândulas Salivares/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Glândula Submandibular/química , Glândula Submandibular/efeitos dos fármacos , Glândula Submandibular/metabolismo , Sulfonamidas/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Transfecção
14.
Am J Physiol Gastrointest Liver Physiol ; 301(5): G814-24, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21868636

RESUMO

To examine the very initial step that takes place immediately after tissue injury and is linked to tissue regeneration, we employed the submandibular gland (SMG), which was injured by ligation of its main excretory duct (MED). Ligation of the MED of the SMG in mice induced the expression of Sca-1, a protein marker of hematopoietic stem cells. In the normal gland, a low level of Sca-1 was expressed, which was localized predominantly in the excretory duct cells. At 1 day after ligation, Sca-1 expression increased prominently in almost all of cells in the duct system, but not in the acinar cells. The level of Sca-1 mRNA had begun to increase at 6 h after ligation and continuously rose thereafter until it reached a plateau, which occurred ∼12 h after ligation. STAT3 phosphorylated at its tyrosine-705 (p-STAT3) in the ligated gland increased immediately after ligation, and it was localized in the nuclei of all duct cells. The results of an EMSA revealed the specific binding of a nuclear extract to the sequence of the γ-interferon activation site (GAS) present in the Sca-1 promoter and confirmed that such binding increased after ligation. Thus the present study suggests that STAT3, having been phosphorylated following MED ligation, was transferred to the nucleus, where it bound to the GAS element in the promoter of Sca-1 gene, resulting in promotion of Sca-1 gene expression. Actual prevention of STAT3 phosphorylation reduced the ligation-induced Sca-1 elevation.


Assuntos
Antígenos Ly/metabolismo , Proteínas de Membrana/metabolismo , Fator de Transcrição STAT3/metabolismo , Ductos Salivares/metabolismo , Glândula Submandibular/metabolismo , Animais , Antígenos Ly/genética , Ligadura , Proteínas de Membrana/genética , Camundongos , Fosforilação , Regiões Promotoras Genéticas , Fator de Transcrição STAT3/genética , Ductos Salivares/citologia , Ductos Salivares/cirurgia , Glândula Submandibular/citologia
15.
Am J Pathol ; 177(2): 724-34, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20522648

RESUMO

The mRNA and protein levels of aquaporin (AQP)5 in the parotid gland were found to be potentially decreased by lipopolysaccharide (LPS) in vivo in C3H/HeN mice, but only weakly in C3H/HeJ, a TLR4 mutant mouse strain. In the LPS-injected mice, pilocarpine-stimulated saliva production was reduced by more than 50%. In a tissue culture system, the LPS-induced decrease in the AQP5 mRNA level was blocked completely by pyrrolidine dithiocarbamate, MG132, tyrphostin AG126, SP600125, and partially by SB203580, which are inhibitors for IkappaB kinase, 26S proteasome, ERK1/2, JNK, and p38 MAPK, respectively. In contrast, the expression of AQP1 mRNA was down-regulated by LPS and such down-regulation was blocked only by SP600125. The transcription factors NF-kappaB (p65 subunit), p-c-Jun, and c-Fos were increased by LPS given in vivo, whereas the protein-binding activities of the parotid gland extract toward the sequences for NF-kappaB but not AP-1-responsive elements present at the promoter region of the AQP5 gene were increased by LPS injection. Co-immunoprecipitation by using antibody columns suggested the physical association of the three transcription factors. These results suggest that LPS-induced potential down-regulation of expression of AQP5 mRNA in the parotid gland is mediated via a complex(es) of these two classes of transcription factors, NF-kappaB and p-c-Jun/c-Fos.


Assuntos
Aquaporina 5/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Glândulas Salivares/efeitos dos fármacos , Glândulas Salivares/metabolismo , Animais , Aquaporina 1/genética , Aquaporina 1/metabolismo , Aquaporina 5/genética , Células Cultivadas , Inibidores Enzimáticos/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Nitratos/metabolismo , Nitritos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Glândulas Salivares/citologia
16.
J Oral Pathol Med ; 40(8): 651-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21884259

RESUMO

The effect of ligation of the main excretory duct (MED) of the mouse submandibular gland (SMG) on the expression of Sca-1, a stem cell antigen, was examined by Western blotting and immunohistochemistry. By Western blotting, the expression of Sca-1 with a molecular weight of 18 kDa was identified in the normal gland. At 1 day post-ligation, the expression level of Sca-1 was strongly increased in the experimental gland and weakly in the contralateral gland, and such expression in both glands decreased at 6 days. By immunohistochemistry, Sca-1 was detected weakly in the apical membrane of excretory duct (ED) cells of the SMG under the normal condition. By duct ligation, Sca-1 became expressed strongly in most cells of the two major duct systems, i.e., the striated duct (SD) and granular convoluted tubules (GCT), but was not detected in the acinar (Ac) cells. By fluorescence-activated cell sorter (FACS) analysis, the number of side population (SP) cells in this gland was found to be increased by ligation. These results imply that Sca-1-positive cells may have a role in the duct cell proliferation in the regeneration step elicited by MED ligation-induced injury.


Assuntos
Antígenos Ly/metabolismo , Proteínas de Membrana/metabolismo , Ductos Salivares/metabolismo , Células da Side Population/citologia , Glândula Submandibular/metabolismo , Animais , Contagem de Células , Proliferação de Células , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração , Ductos Salivares/citologia , Ductos Salivares/lesões , Salivação , Células da Side Population/metabolismo , Glândula Submandibular/citologia
17.
In Vitro Cell Dev Biol Anim ; 57(5): 560-570, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34021476

RESUMO

The nuclear factor of activated T-cell (NFAT) signaling pathway is involved in angiogenesis following initiation by vascular endothelial growth factor (VEGF). A number of angiogenic genes have been associated with calcineurin in the NFAT pathway, forming a calcineurin-NFAT pathway. This study aims to investigate the involvement of four angiogenic genes within the calcineurin-NFAT pathway in the endothelial-like differentiation of stem cells from human exfoliated deciduous teeth (SHED) cultured on a human amniotic membrane (HAM) induced by VEGF. SHED were induced with VEGF for 24 h, then cultured on the stromal side of HAM. The cells were then further induced with VEGF until days 1 and 14. To understand the role of calcineurin, its potent inhibitor, cyclosporin A (CsA), was added into the culture. Results from SEM and H&E analyses showed SHED grew on HAM surface. Gene expression study of Cox-2 showed a drastically reduced expression with CsA treatment indicating Cox-2 involvement in the calcineurin-NFAT pathway. Meanwhile, IL-8 was probably controlled by another pathway as it showed no CsA inhibition. In contrast, high expression of ICAM-1 and RCAN1.4 by VEGF and CsA implied that these genes were not controlled by the calcineurin-NFAT-dependent pathway. In conclusion, the results of this study suggest the involvement of Cox-2 in the calcineurin-NFAT-dependent pathway while RCAN1.4 was controlled by NFAT molecule in endothelial-like differentiation of SHED cultured on HAM with VEGF induction.


Assuntos
Âmnio/metabolismo , Calcineurina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Dente Decíduo/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Células Cultivadas , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/metabolismo
18.
Dev Biol ; 325(2): 434-43, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19013448

RESUMO

The submandibular gland (SMG) develops through the epithelial-mesenchymal interaction mediated by many growth/differentiation factors including activin and BMPs, which are synthesized as inactive precursors and activated by subtilisin-like proprotein convertases (SPC) following cleavage at their R-X-K/R-R site. Here, we found that Dec-RVKR-CMK, a potent inhibitor of SPC, inhibited the branching morphogenesis of the rat embryonic SMG, and caused low expression of a water channel AQP5, in an organ culture system. Dec-RVKR-CMK also decreased the expression of PACE4, a SPC member, but not furin, another SPC member, suggesting the involvement of PACE4 in the SMG development. Heparin, which is known to translocate PACE4 in the extracellular matrix into the medium, and an antibody specific for the catalytic domain of PACE4, both reduced the branching morphogenesis and AQP5 expression in the SMG. The inhibitory effects of Dec-RVKR-CMK were partially rescued by the addition of recombinant BMP2, whose precursor is one of the candidate substrates for PACE4 in vivo. Further, the suppression of PACE4 expression by siRNAs resulted in decreased expression of AQP5 and inhibition of the branching morphogenesis in the present organ culture system. These observations suggest that PACE4 regulates the SMG development via the activation of some growth/differentiation factors.


Assuntos
Clorometilcetonas de Aminoácidos/farmacologia , Aquaporina 5/biossíntese , Inativação Gênica , Pró-Proteína Convertases/fisiologia , Glândula Submandibular/metabolismo , Animais , Matriz Extracelular/metabolismo , Furina/metabolismo , Heparina/farmacologia , Morfogênese , Técnicas de Cultura de Órgãos , Pró-Proteína Convertases/antagonistas & inibidores , Pró-Proteína Convertases/genética , Ratos , Ratos Sprague-Dawley , Glândula Submandibular/efeitos dos fármacos , Glândula Submandibular/embriologia
19.
Am J Physiol Gastrointest Liver Physiol ; 299(5): G1106-17, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20689061

RESUMO

Chorda tympani denervation (CTD) of rats was earlier shown to result in loss of submandibular gland (SMG) weight (at only 1 wk) and in continued reduction in aquaporin 5 (AQP5) protein expression (until 4 wk), without affecting its mRNA synthesis (Li X, Azlina A, Karabasil MR, Purwanti N, Hasegawa T, Yao C, Akamatsu T, Hosoi K. Am J Physiol Gastrointest Liver Physiol 295: G112-G123, 2008). The present study indicated that despite elevation of bax, a proapoptosis protein, by CTD, the operation also increased the level of bcl-2, an antiapoptosis protein, in the SMG. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL assay) showed no increase in the number of apoptotic cells in the SMG. CTD, however, induced strongly and transiently (at 1-3 days) the protein expression of LC3B-II, a marker protein of autophagosomes, suggesting that the reduction in the gland weight was due to onset of autophagy by CTD. Upon CTD, Lamp2, a lysosomal marker, gradually increased in amount, reaching a peak at the 14th day. Immunohistochemical analysis revealed an increase in the number of lysosome-like structures positive for both AQP5 and Lamp2 in the acinar cells of the SMG after CTD; similar changes were observed also for AQP5 and LC3Bs. These data suggest that AQP5 in the SMG entered autophagosomes and/or lysosomes for degradation upon CTD. In vitro AQP5-degrading activity was found in the SMG extracts, and such activity was shown to be increased by CTD. Inhibitor experiments implied cathepsins B and L to be candidate enzymes for this degradation under normal and CTD conditions, respectively.


Assuntos
Aquaporina 5/metabolismo , Nervo da Corda do Tímpano/lesões , Lisossomos/metabolismo , Glândula Submandibular/metabolismo , Animais , Apoptose/fisiologia , Western Blotting , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Parassimpatectomia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Glândula Submandibular/inervação
20.
Appl Biochem Biotechnol ; 191(1): 177-190, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32096060

RESUMO

Previously, it was reported that human amniotic membrane (AM) induced stem cells from human deciduous exfoliated teeth (SHED) endothelial-like-cell differentiation. This interesting effect of AM matrix on SHED demands further elucidation. Objective of this in vitro work was to study the effect of 24-h VEGF induced on SHED endothelial differentiation when seeded on acellular stromal side (SS) of AM matrix. Stemness of SHED was identified by flow cytometry. Cell attachment and morphological changes towards the matrix was observed by scanning electron microscopy. Protein expression of endothelial marker was examined by Western blot. The expression of stem cells and endothelial-specific gene markers of VEGF-induced SHED cultured on human AM was inspected via reverse transcriptase-polymerase chain reaction. Results showed SHED at both passages retain stemness property. Ang-1 protein was expressed in SHED. Cells treated with VEGF and cultured on AM transformed attached well to AM. VEGF-induced SHED expressed both stem cell and endothelial-specific markers throughout the treatments and timeline. Interestingly, prolonged VEGF treatment increased the expression of Cox-2 and VE-Cadherin genes in all treated groups when compared to SHED. It was concluded that the VEGF-induced SHED showed better expression of endothelial-specific markers when cultured on SS of AM, with prolonged VEGF treatment.


Assuntos
Âmnio/química , Antígenos de Diferenciação/biossíntese , Matriz Extracelular/química , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco/metabolismo , Dente Decíduo/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Células Cultivadas , Humanos , Células-Tronco/citologia , Esfoliação de Dente , Dente Decíduo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA