Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375124

RESUMO

In recent years, G protein vs. ß-arrestin biased agonism at opioid receptors has been proposed as an opportunity to produce antinociception with reduced adverse effects. However, at present this approach is highly debated, a reason why more information about biased ligands is required. While the practical relevance of bias in the case of µ-opioid receptors (MOP) still needs to be validated, it remains important to understand the basis of this bias of MOP (and other GPCRs). Recently, we reported two cyclopeptides with high affinity for MOP, the G protein biased Dmt-c[d-Lys-Phe-pCF3-Phe-Asp]NH2 (F-81), and the ß-arrestin 2 biased Dmt-c[d-Lys-Phe-Asp]NH2 (C-33), as determined by calcium mobilization assay and bioluminescence resonance energy transfer-based assay. The biased character of F-81 and C-33 has been further analyzed in the [35S]GTPγS binding assay in human MOP-expressing cells, and the PathHunter enzyme complementation assay, used to measure ß-arrestin 2 recruitment. To investigate the structural features of peptide-MOP complexes, we performed conformational analysis by NMR spectroscopy, molecular docking, and molecular dynamics simulation. These studies predicted that the two ligands form alternative complexes with MOP, engaging specific ligand-receptor contacts. This would induce different displays of the cytosolic side of the seven-helices bundle, in particular by stabilizing different angulations of helix 6, that could favor intracellular coupling to either G protein or ß-arrestin.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Modelos Moleculares , Conformação Molecular , Receptores Opioides mu/agonistas , Receptores Opioides mu/química , Transdução de Sinais/efeitos dos fármacos , beta-Arrestinas/metabolismo , Animais , Células CHO , Cricetulus , Descoberta de Drogas , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular
2.
Br J Anaesth ; 122(6): e136-e145, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31010646

RESUMO

Analgesic design and evaluation have been driven by the desire to create high-affinity high-selectivity mu (µ)-opioid peptide (MOP) receptor agonists. Such ligands are the mainstay of current clinical practice, and include morphine and fentanyl. Advances in this sphere have come from designing pharmacokinetic advantage, as in rapid metabolism for remifentanil. These produce analgesia, but also the adverse-effect profile that currently defines this drug class: ventilatory depression, tolerance, and abuse liability. The MOP receptor is part of a family, and there are significant functional interactions between other members of the family (delta [δ]-opioid peptide [DOP], kappa [κ]-opioid peptide [KOP], and nociceptin/orphanin FQ receptor [NOP]). Experimentally, MOP agonism and DOP antagonism produce anti-nociception (animals) with no tolerance, and low doses of MOP and NOP ligands synergise to antinociceptive advantage. In this latter context, the lack of effect of NOP agonists on ventilation is an additional advantage. Recent development has been to move towards low-selectivity multifunctional 'mixed ligands', such as cebranopadol, or ligand mixtures, such as Targinact®. Moreover, the observation that ß-arrestin coupling underlies the side-effect profile for MOP ligands (from knockout animal studies) led to the discovery of biased (to G-protein and away from ß-arrestin intracellular signalling) MOP ligands, such as oliceridine. There is sufficient excitement in the opioid field to suggest that opioid analgesics without significant side-effects may be on the horizon, and the 'opioid Holy Grail' might be in reach.


Assuntos
Analgésicos Opioides/farmacologia , Analgésicos Opioides/efeitos adversos , Combinação de Medicamentos , Desenho de Fármacos , Quimioterapia Combinada , Humanos , Ligantes , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides mu/agonistas
3.
Expert Opin Drug Discov ; 17(3): 215-223, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34817313

RESUMO

INTRODUCTION: Opioids acting at the MOP (mu:µ) receptor produce analgesia but also side effects. There is debate suggesting opioid receptors produce analgesia via G-protein and side-effects via ß-arrestin-2 pathways. Opioids targeting G-proteins over the arrestins (bias) offer potential therapeutic advantages. Oliceridine is a putative MOP, G-protein biased agonist. AREAS COVERED: Oliceridine is selective for MOP receptors with greater activity at G-proteins over arrestins. A substantial body of evidence now points to a simpler pharmacological descriptor of partial agonist. Preclinical in vivo data indicates a robust antinociceptive response of shorter duration than morphine. Apollo trials (Phase-III RCT-bunionectomy/abdominoplasty) describe good analgesic efficacy that was non-inferior to morphine with good tolerability and side-effect profile. There is evidence for an improved respiratory safety profile. Oliceridine is approved by the FDA. EXPERT OPINION: Oliceridine will be an important addition to the clinical armamentarium for use for the management of acute pain severe enough to require an intravenous opioid analgesic and for whom alternative treatments are inadequate. Respiratory advantage and the possibility of reduced abuse potential are possible advantages over the use of traditional opioids. Based on a number of excellent, highly detailed studies, oliceridine should be described as a partial agonist; this 'label' does not matter.


Assuntos
Dor Pós-Operatória , Compostos de Espiro , Tiofenos , Analgésicos Opioides/efeitos adversos , Humanos , Morfina/efeitos adversos , Dor Pós-Operatória/tratamento farmacológico , Compostos de Espiro/efeitos adversos , Tiofenos/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA