RESUMO
The proper maturation of emotional and sensory circuits requires fine-tuning of serotonin (5-HT) level during early postnatal development. Consistently, dysfunctions of the serotonergic system have been associated with neurodevelopmental psychiatric diseases, including autism spectrum disorders (ASD). However, the mechanisms underlying the developmental effects of 5-HT remain partially unknown, one obstacle being the action of 5-HT on different cell types. Here, we focused on microglia, which play a role in brain wiring refinement, and we investigated whether the control of these cells by 5-HT is relevant for neurodevelopment and spontaneous behaviors in mice. Since the main 5-HT sensor in microglia is the 5-HT2B receptor subtype, we prevented 5-HT signaling specifically in microglia by conditional invalidation of the Htr2b gene in these cells. We observed that abrogating the serotonergic control of microglia during early postnatal development affects the phagolysosomal compartment of these cells and their proximity to dendritic spines and perturbs neuronal circuits maturation. Furthermore, this early ablation of microglial 5-HT2B receptors leads to adult hyperactivity in a novel environment and behavioral defects in sociability and flexibility. Importantly, we show that these behavioral alterations result from a developmental effect, since they are not observed when microglial Htr2b invalidation is induced later, at P30 onward. Thus, a primary alteration of 5-HT sensing in microglia, during a critical time window between birth and P30, is sufficient to impair social and flexibility skills. This link between 5-HT and microglia may explain the association between serotonergic dysfunctions and behavioral traits like impaired sociability and inadaptability to novelty, which are prominent in psychiatric disorders such as ASD.
Assuntos
Microglia , Serotonina , Humanos , Camundongos , Animais , Serotonina/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Transdução de SinaisRESUMO
Macrophages can either promote or resolve inflammatory responses, and their polarization state is modulated by peripheral serotonin (5-hydroxytryptamine [5-HT]). In fact, pro- and anti-inflammatory macrophages differ in the expression of serotonin receptors, with 5-HT2B and 5-HT7 expression restricted to M-CSF-primed monocyte-derived macrophages (M-MØ). 5-HT7 drives the acquisition of profibrotic and anti-inflammatory functions in M-MØ, whereas 5-HT2B prevents the degeneration of spinal cord mononuclear phagocytes and modulates motility of murine microglial processes. Because 5-HT2B mediates clinically relevant 5-HT-related pathologies (valvular heart disease, pulmonary arterial hypertension) and is an off target of anesthetics, antiparkinsonian drugs, and selective serotonin reuptake inhibitors, we sought to determine the transcriptional consequences of 5-HT2B engagement in human macrophages, for which 5-HT2B signaling remains unknown. Assessment of the effects of specific agonists and antagonist revealed that 5-HT2B engagement modifies the cytokine and gene signature of anti-inflammatory M-MØ, upregulates the expression of aryl hydrocarbon receptor (AhR) target genes, and stimulates the transcriptional activation of AhR. Moreover, we found that 5-HT dose dependently upregulates the expression of AhR target genes in M-MØ and that the 5-HT-mediated activation of AhR is 5-HT2B dependent because it is abrogated by the 5-HT2B-specific antagonist SB204741. Altogether, our results demonstrate the existence of a functional 5-HT/5-HT2B/AhR axis in human macrophages and indicate that 5-HT potentiates the activity of a transcription factor (AhR) that regulates immune responses and the biological responses to xenobiotics.
Assuntos
Macrófagos/fisiologia , Microglia/fisiologia , Receptor 5-HT2B de Serotonina/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Serotonina/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Indóis/farmacologia , Fagocitose , RNA Interferente Pequeno/genética , Receptores de Hidrocarboneto Arílico/genética , Receptores de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Transdução de Sinais , Tiofenos/farmacologia , Ativação Transcricional , TranscriptomaRESUMO
Severe peripheral infections induce an adaptive sickness behavior and an innate immune reaction in various organs including the brain. On the long term, persistent alteration of microglia, the brain innate immune cells, is associated with an increased risk of psychiatric disorders. It is thus critical to identify genes and mechanisms controlling the intensity and duration of the neuroinflammation induced by peripheral immune challenges. We tested the hypothesis that the 5-HT2B receptor, the main serotonin receptor expressed by microglia, might represent a valuable candidate. First, we observed that Htr2b-/- mice, knock-out for the 5-HT2B receptor gene, developed, when exposed to a peripheral lipopolysaccharide (LPS) challenge, a stronger weight loss compared to wild-type mice; in addition, comparison of inflammatory markers in brain, 4 and 24 hr after LPS injection, showed that Htr2b deficiency leads to a prolonged neuroinflammation. Second, to assess the specific contribution of the microglial 5-HT2B receptor, we investigated the response to LPS of conditional knock-out mice invalidated for Htr2b in microglia only. We found that deletion of Htr2b in microglia since birth is sufficient to cause enhanced weight loss and increased neuroinflammatory response upon LPS injection at adult stage. In contrast, mice deleted for microglial Htr2b in adulthood responded normally to LPS, revealing a neonatal developmental effect. These results highlight the role of microglia in the response to a peripheral immune challenge and suggest the existence of a developmental, neonatal period, during which instruction of microglia through 5-HT2B receptors is necessary to prevent microglia overreactivity in adulthood.
Assuntos
Comportamento de Doença , Microglia , Animais , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Receptor 5-HT2B de Serotonina/genética , Serotonina , Redução de PesoRESUMO
Serotonin is a neurotransmitter widely conserved from ancient organisms lacking nervous systems through man, and its presence precedes the appearance of nervous systems on both developmental and evolutionary time scales. Serotonin receptor subtypes diversified approximately at the time period during which vertebrates diverged from invertebrates. The biological and clinical importance of serotonin receptors, may benefit from studies on their evolution. Although potentially informative about their pathophysiological functions, reviews on this topic are sparse. Several observations support basic functions mediated by serotonin, both in periphery and central nervous system. In particular, 5-HT2B receptors have been implicated in embryonic development, including cell proliferation, survival, and/or differentiation, in either neural crest cell derivatives, myeloid cell lineage, or heart embryogenesis. In this review, we collected existing data about the genomic association between the RPN2 proteasome subunit gene Psmd1 and the 5-HT2B receptor gene Htr2b. We discuss about the possibility that, during genome duplications, a single copy of this pair of genes has been conserved, suggesting a strong selective pressure. Many basic physiological functions in which serotonin system is involved could be linked to the early association of these two genes in pre-vertebrates. Their evolutionary association highlights the possibility that the 5-HT2B receptor gene, Htr2b, is the common ancestor of 5-HT2A/2B/2C-receptor subfamily. Disentangling these possibilities could bring new understanding of the respective importance of these receptors in pathophysiology of serotonin.
Assuntos
Receptores de Serotonina/fisiologia , Animais , Evolução Molecular , Genômica , Humanos , Complexo de Endopeptidases do Proteassoma/fisiologia , Serotonina/metabolismoRESUMO
Nitric oxide (NO) is a diffusible second messenger with a great variety of functions in the brain. NO is produced by three isoforms of NO synthase (NOS), NOS1, NOS2, and NOS3. Although broad agreement exists regarding the expression of NOS1 and NOS3 in neurons and endothelial cells, the pattern of NOS2 expression is still controversial and remains elusive. We have now generated a novel transgenic mouse that expresses the fluorescent reporter tdTomato and the CRE recombinase under the control of the Nos2 gene regulatory regions. Such tool allows the reliable tracking of NOS2 expression in tissue and further unravels episodes of transient NOS2 expression. Using this transgenic mouse, we show that in the healthy brain, NOS2 is only transiently expressed in neurons scattered in the piriform and entorhinal cortex, the amygdaloid nuclei, the medial part of the thalamus, the hypothalamus, the dentate gyrus, and the cerebellum. NOS2 expression was rarely detected in microglia. We further show that inflammation, induced by intracerebral injection of LPS and IFNγ, triggers transient expression of NOS2 in microglia but not in neurons. This novel transgenic tool has thus allowed us to clarify the NOS2 expression pattern and its differential profile in neurons and microglia in healthy and inflammatory conditions.
Assuntos
Encéfalo/enzimologia , Regulação Enzimológica da Expressão Gênica , Microglia/enzimologia , Óxido Nítrico Sintase Tipo II/biossíntese , Animais , Encéfalo/patologia , Células Cultivadas , Inflamação/enzimologia , Inflamação/patologia , Camundongos , Camundongos Transgênicos , Microglia/patologiaRESUMO
BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder characterized by a loss of dopaminergic neurons (DN) in the substantia nigra (SN). Several lines of evidence suggest that apoptotic cell death of DN is driven in part by non-cell autonomous mechanisms orchestrated by microglial cell-mediated inflammatory processes. Although the mechanisms and molecular network underlying this deleterious cross-talk between DN and microglial cells remain largely unknown, previous work indicates that, upon DN injury, activation of the ß2 integrin subunit CD11b is required for microglia-mediated DN cell death. Interestingly, during brain development, the CD11b integrin is also involved in microglial induction of neuronal apoptosis and has been shown to act in concert with the DAP12 immunoreceptor. Whether such a developmental CD11b/DAP12 pathway could be reactivated in a pathological context such as PD and play a role in microglia-induced DN cell death is a tantalizing hypothesis that we wished to test in this study. METHODS: To test the possibility that DAP12 could be involved in microglia-associated DN injury, we used both in vitro and in vivo toxin-based experimental models of PD recapitulating microglial-mediated non-cell autonomous mechanisms of DN cell death. In vitro, enriched mesencephalic neuronal/microglial co-cultures were exposed to the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) whereas in vivo, mice were administrated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) according to acute or subchronic mode. Mice deficient for DAP12 or CD11b were used to determine the pathological function of the CD11b/DAP12 pathway in our disease models. RESULTS: Our results show that DAP12 and CD11b partially contribute to microglia-induced DN cell death in vitro. Yet, in vivo, mice deficient for either of these factors develop similar neuropathological alterations as their wild-type counterparts in two different MPTP mouse models of PD. CONCLUSION: Overall, our data suggest that DAP12 and CD11b contribute to microglial-induced DN cell death in vitro but not in vivo in the MPTP mouse model of PD. Therefore, the CD11b/DAP12 pathway may not be considered as a promising therapeutic target for PD.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Antígeno CD11b/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Microglia/metabolismo , Transtornos Parkinsonianos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Morte Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Neurônios Dopaminérgicos/patologia , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Transtornos Parkinsonianos/patologiaRESUMO
Neurons and astrocytes are generated sequentially from radial glia. Once neurogenesis is completed, radial glia starts to differentiate into immature astrocytes. Astrocytes then maturate and change their morphology and electrophysiological properties. Neurotrophic cytokines or bone morphogenetic proteins have been identified as inducers of the developmental switch from neurogenesis to astrogenesis. However, the factors and mechanisms regulating the late differentiation of radial glia and the subsequent astrocyte maturation are poorly described. We used two independent approaches to examine the role of nitric oxide (NO) in the process of astrogenesis and maturation of astrocytes. First using a pharmacological approach, we depleted NO from developing hippocampus by intraventricular injection of a specific scavenger. Then by a genetic approach, we analyzed a nitric oxide synthase-2 (NOS2) knockout mouse. In both models, we found that differentiation of RC2-positive radial glia into late GFAP-positive radial glia was impaired. The cell-fate analysis after incorporation of BrdU demonstrated that astrogenesis was not altered upon NOS2 deficiency. Maturation of astrocytes was assessed by electrophysiological recordings at P7 and functional analysis. In wild type, 20% of astrocytes were immature as shown by their non-linear I/V relationship and high membrane resistance, whereas in NOS2-/- hippocampus, 51% of the astrocytes displayed an immature profile. The reduced branching of astrocytes upon NOS2 deficiency and their low content in connexin-43 further confirmed their immature profile. Our results highlight a novel developmental role of NO and NOS2 in the differentiation of radial glia and the maturation of astrocytes.
Assuntos
Astrócitos/fisiologia , Hipocampo/citologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Animais , Astrócitos/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Técnicas de Patch-ClampRESUMO
In all the species examined thus far, the behavior of microglia during development appears to be highly stereotyped. This reproducibility supports the notion that these cells have a physiological role in development. Microglia are macrophages that migrate from the yolk sac and colonize the central nervous system early during development. The first invading yolk-sac macrophages are highly proliferative and their role has not yet been addressed. At later developmental stages, microglia can be found throughout the brain and tend to preferentially reside at specific locations that are often associated with known developmental processes. Thus, it appears that microglia concentrate in areas of cell death, in proximity of developing blood vessels, in the marginal layer, which contains developing axon fascicles, and in close association with radial glial cells. This review describes the main features of brain colonization by microglia and discusses the possible physiological roles of these cells during development.
Assuntos
Sistema Nervoso Central/citologia , Sistema Nervoso Central/embriologia , Microglia/citologia , Microglia/fisiologia , Animais , Comunicação Celular/fisiologia , Sistema Nervoso Central/fisiologia , Humanos , Neurônios/citologia , Neurônios/fisiologia , Saco Vitelino/citologia , Saco Vitelino/fisiologiaRESUMO
In several brain regions, microglia actively promote neuronal apoptosis during development. However, molecular actors leading microglia to trigger death remain mostly unknown. Here, we show that, in the developing hippocampus, apoptotic neurons are contacted by microglia expressing both the integrin CD11b and the immunoreceptor DAP12. We demonstrate that developmental apoptosis decreases in mice deficient for CD11b or DAP12. In addition, function-blocking antibodies directed against CD11b decrease neuronal death when injected into wild-type neonates, but have no effect when injected into DAP12-deficient littermates. This demonstrates that DAP12 and CD11b act in converging pathways to induce neuronal death. Finally, we show that DAP12 and CD11b control the production of microglial superoxide ions, which kill the neurons. Thus, our data show that the process of developmental neuronal death triggered by microglia is similar to the elimination of pathogenic cells by the innate immune cells.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/fisiologia , Antígeno CD11b/metabolismo , Hipocampo/fisiologia , Microglia/metabolismo , Neurônios/fisiologia , Receptores Imunológicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígeno CD11b/genética , Comunicação Celular , Hipocampo/citologia , Imunidade Inata/fisiologia , Camundongos , Camundongos Knockout , Camundongos Mutantes , Microglia/fisiologia , Neurônios/metabolismo , Superóxidos/metabolismoRESUMO
Membrane receptors often form complexes with other membrane proteins that directly interact with different effectors of the signal transduction machinery. G-protein-coupled receptors (GPCRs) were for long time considered as single pharmacological entities. However, evidence for oligomerization appeared for various classes and subtypes of GPCRs. This review focuses on metabotropic serotonin (5-hydroxytryptamine, 5-HT) receptors, which belong to the rhodopsin-like class A of GPCRs, and will summarize the convergent evidence that homo- and hetero-dimers containing 5-HT receptors exist in transfected cells and in-vivo. We will show that complexes involving 5-HT receptors may acquire new signal transduction pathways and new physiological roles. In some cases, these complexes participate in disease-specific deregulations, that can be differentially affected by various drugs. Hence, selecting receptor complex-specific responses of these heterodimers may constitute an emerging strategy likely to improve beneficial therapeutic effects.
Assuntos
Multimerização Proteica , Receptores de Serotonina/química , Receptores de Serotonina/metabolismo , Transdução de Sinais , Animais , Humanos , LigantesRESUMO
Major depression is a psychiatric disorder with complex etiology. About 30% of depressive patients are resistant to antidepressants that are currently available, likely because they only target the monoaminergic systems. Thus, identification of novel antidepressants with a larger action spectrum is urgently required. Epidemiological data indicate high comorbidity between metabolic and psychiatric disorders, particularly obesity and depression. We used a well-characterized anxiety/depressive-like mouse model consisting of continuous input of corticosterone for seven consecutive weeks. A panel of reliable behavioral tests were conducted to assessing numerous facets of the depression-like state, including anxiety, resignation, reduced motivation, loss of pleasure, and social withdrawal. Furthermore, metabolic features including weight, adiposity, and plasma biological parameters (lipids, adipokines, and cytokines) were investigated in corticosterone-treated mice. Our data show that chronic administration of corticosterone induced the parallel onset of metabolic and behavioral dysfunctions in mice. AdipoRon, a potent adiponectin receptor agonist, prevented the corticosterone-induced early onset of moderate obesity and metabolic syndromes. Moreover, in all the behavioral tests, daily treatment with AdipoRon successfully reversed the corticosterone-induced depression-like state in mice. AdipoRon exerted its pleiotropic actions on various systems including hippocampal neurogenesis, serotonergic neurotransmission, neuroinflammation, and the tryptophan metabolic pathway, which can explain its antidepressant properties. Our study highlights the pivotal role of the adiponergic system in the development of both metabolic and psychiatric disorders. AdipoRon may constitute a promising novel antidepressant.
Assuntos
Antidepressivos/farmacologia , Ansiedade/tratamento farmacológico , Depressão/tratamento farmacológico , Piperidinas/farmacologia , Receptores de Adiponectina/agonistas , Animais , Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Corticosterona/efeitos adversos , Citocinas/sangue , Depressão/induzido quimicamente , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Microglia are the predominant immune response cells and professional phagocytes of the central nervous system (CNS) that have been shown to be important for brain development and homeostasis. These cells present a broad spectrum of phenotypes across stages of the lifespan and especially in CNS diseases. Their prevalence in all neurological pathologies makes it pertinent to reexamine their distinct roles during steady-state and disease conditions. A major question in the field is determining whether the clustering and phenotypical transformation of microglial cells are leading causes of pathogenesis, or potentially neuroprotective responses to the onset of disease. The recent explosive growth in our understanding of the origin and homeostasis of microglia, uncovering their roles in shaping of the neural circuitry and synaptic plasticity, allows us to discuss their emerging functions in the contexts of cognitive control and psychiatric disorders. The distinct mesodermal origin and genetic signature of microglia in contrast to other neuroglial cells also make them an interesting target for the development of therapeutics. Here, we review the physiological roles of microglia, their contribution to the effects of environmental risk factors (e.g., maternal infection, early-life stress, dietary imbalance), and their impact on psychiatric disorders initiated during development (e.g., Nasu-Hakola disease (NHD), hereditary diffuse leukoencephaly with spheroids, Rett syndrome, autism spectrum disorders (ASDs), and obsessive-compulsive disorder (OCD)) or adulthood (e.g., alcohol and drug abuse, major depressive disorder (MDD), bipolar disorder (BD), schizophrenia, eating disorders and sleep disorders). Furthermore, we discuss the changes in microglial functions in the context of cognitive aging, and review their implication in neurodegenerative diseases of the aged adult (e.g., Alzheimer's and Parkinson's). Taking into account the recent identification of microglia-specific markers, and the availability of compounds that target these cells selectively in vivo, we consider the prospect of disease intervention via the microglial route.
RESUMO
Mechanisms inducing neuronal death at defined times during embryogenesis remain enigmatic. We show in explants that a developmental switch occurs between embryonic day 12 (E12) and E13 in rats that is 72-48 hr before programmed cell death. Half the motoneurons isolated from peripheral tissues at E12 escape programmed cell death, whereas 90% of motoneurons isolated at E13 enter a death program. The surrounding somite commits E12 motoneurons to death. This effect requires macrophage cells, is mimicked by tumor necrosis factor alpha (TNFalpha), and is inhibited by anti-TNFalpha antibodies. In vivo, TNFalpha is detected within somite macrophages, and TNF receptor 1 (TNFR1) is detected within motoneurons precisely between E12 and E13. Although motoneuron cell death occurs normally in TNFalpha-/- mice, this process is significantly reduced in explants from TNFalpha-/- and TNFR1-/- mice. Thus, embryonic motoneurons acquire the competence to die, before the onset of programmed cell death, from extrinsic signals such as macrophage-derived TNFalpha
Assuntos
Apoptose/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Macrófagos/metabolismo , Neurônios Motores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Antígenos CD/biossíntese , Apoptose/genética , Regulação da Expressão Gênica/fisiologia , Mesoderma/metabolismo , Neurônios Motores/citologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores do Fator de Necrose Tumoral/biossíntese , Receptores Tipo I de Fatores de Necrose Tumoral , Somitos/citologia , Somitos/fisiologia , Fator de Necrose Tumoral alfa/genéticaRESUMO
Rat spinal cord interneurons undergo programmed cell death shortly after birth. We investigated here whether cell death of interneurons could be regulated by trophic factors produced by motoneurons, one of their main targets. To test this hypothesis, we studied the effect of the selective destruction of motoneurons on the survival of interneurons in organotypic cultures of embryonic rat spinal cords. Motoneurons were eliminated by an anti-p75(NTR)-specific immunotoxin (192 IgG-saporin). We then observed a decrease of 28% in the number of ventral spinal interneurons immunoreactive (IR) for the homeoprotein PAX2. This was correlated with an increase in the number of apoptotic nuclei in the same area. Because neurotrophin-3 (NT-3) is specifically produced by motoneurons and because interneurons express the NT-3 high-affinity receptor trkC, we examined the role of NT-3 in the survival of PAX2-IR interneurons. Addition of NT-3 to 192 IgG-saporin-treated explants rescued ventral PAX2-IR interneurons. Depletion of secreted NT-3 by anti-NT-3 antibodies induced 66% loss of ventral PAX2-IR interneurons. We conclude that motoneuron-derived NT-3 is a trophic factor for ventral PAX2-IR interneurons.
Assuntos
Proteínas de Ligação a DNA/biossíntese , Interneurônios/metabolismo , Neurônios Motores/metabolismo , Neurotrofina 3/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/biossíntese , Animais , Anticorpos/farmacologia , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Contagem de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Imunotoxinas/farmacologia , Interneurônios/citologia , Interneurônios/efeitos dos fármacos , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , N-Glicosil Hidrolases , Neurotrofina 3/antagonistas & inibidores , Neurotrofina 3/farmacologia , Fator de Transcrição PAX2 , Ratos , Receptor de Fator de Crescimento Neural , Receptores de Fator de Crescimento Neural/antagonistas & inibidores , Proteínas Inativadoras de Ribossomos Tipo 1 , Saporinas , Medula Espinal/citologia , Medula Espinal/embriologiaRESUMO
Several proteins are expressed in both immune and nervous systems. However, their putative nonimmune functions in the brain remain poorly understood. KARAP/DAP12 is a transmembrane polypeptide associated with cell-surface receptors in hematopoeitic cells. Its mutation in humans induces Nasu-Hakola disease, characterized by presenile dementia and demyelinization. However, alteration of white matter occurs months after the onset of neuropsychiatric symptoms, suggesting that other neuronal alterations occur in the early phases of the disease. We hypothesized that KARAP/DAP12 may impact synaptic function. In mice deficient for KARAP/DAP12 function, long-term potentiation was enhanced and was partly NMDA receptor (NMDAR) independent. This effect was accompanied by changes in synaptic glutamate receptor content, as detected by the increased rectification of AMPA receptor EPSCs and increased sensitivity of NMDAR EPSCs to ifenprodil. Biochemical analysis of synaptic proteins confirmed these electrophysiological data. In mutants, the AMPA receptor GluR2 subunit expression was decreased only in the postsynaptic densities but not in the whole membrane fraction, demonstrating specific impairment of synaptic receptor accumulation. Alteration of the BNDF-tyrosine kinase receptor B (TrkB) signaling in the mutant was demonstrated by the dramatic decrease of synaptic TrkB with no change in other regulatory or scaffolding proteins. Finally, KARAP/DAP12 was detected only in microglia but not in neurons, astrocytes, or oligodendrocytes. KARAP/DAP12 may thus alter microglial physiology and subsequently synaptic function and plasticity through a novel microglia-neuron interaction.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Hipocampo/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Sinapses/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Hipocampo/embriologia , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Mutantes , Microglia/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Células Piramidais/fisiologia , Receptor trkB/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismoRESUMO
Maturation of functional neuronal circuits during central nervous system development relies on sophisticated mechanisms. First, axonal and dendritic growth should reach appropriate targets for correct synapse elaboration. Second, pruning and neuronal death are required to eliminate redundant or inappropriate neuronal connections. Serotonin, in addition to its role as a neurotransmitter, actively participates in postnatal establishment and refinement of brain wiring in mammals. Brain resident macrophages, that is, microglia, also play an important role in developmentally regulated neuronal death as well as in synaptic maturation and elimination. Here, we tested the hypothesis of cross-regulation between microglia and serotonin during postnatal brain development in a mouse model of synaptic refinement. We found expression of the serotonin 5-HT2B receptor on postnatal microglia, suggesting that serotonin could participate in temporal and spatial synchronization of microglial functions. Using two-photon microscopy, acute brain slices, and local delivery of serotonin, we observed that microglial processes moved rapidly toward the source of serotonin in Htr2B(+/+) mice, but not in Htr2B(-/-) mice lacking the 5-HT2B receptor. We then investigated whether some developmental steps known to be controlled by serotonin could potentially result from microglia sensitivity to serotonin. Using an in vivo model of synaptic refinement during early brain development, we investigated the maturation of the retinal projections to the thalamus and observed that Htr2B(-/-) mice present anatomical alterations of the ipsilateral projecting area of retinal axons into the thalamus. In addition, activation markers were upregulated in microglia from Htr2B(-/-) compared to control neonates, in the absence of apparent morphological modifications. These results support the hypothesis that serotonin interacts with microglial cells and these interactions participate in brain maturation.
Assuntos
Corpos Geniculados/crescimento & desenvolvimento , Microglia/fisiologia , Receptor 5-HT2A de Serotonina/metabolismo , Retina/crescimento & desenvolvimento , Serotonina/metabolismo , Sinapses/fisiologia , Animais , Receptor 1 de Quimiocina CX3C , Células Cultivadas , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Corpos Geniculados/fisiologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptor 5-HT2A de Serotonina/genética , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Retina/fisiologia , Técnicas de Cultura de Tecidos , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/fisiologiaRESUMO
Fine-tuning of neuronal activity was thought to be a neuron-autonomous mechanism until the discovery that astrocytes are active players of synaptic transmission. The involvement of astrocytes has changed our understanding of the roles of non-neuronal cells and shed new light on the regulation of neuronal activity. Microglial cells are the macrophages of the brain and they have been mostly investigated as immune cells. However, recent data discussed in this review support the notion that, similarly to astrocytes, microglia are involved in the regulation of neuronal activity. For instance, in most, if not all, brain pathologies a strong temporal correlation has long been known to exist between the pathological activation of microglia and dysfunction of neuronal activity. Recent studies have convincingly shown that alteration of microglial function is responsible for pathological neuronal activity. This causal relationship has also been demonstrated in mice bearing loss-of-function mutations in genes specifically expressed by microglia. In addition to these long-term regulations of neuronal activity, recent data show that microglia can also rapidly regulate neuronal activity, thereby acting as partners of neurotransmission.
RESUMO
Astrocytes constitute a major group of glial cells which were long regarded as passive elements, fulfilling nutritive and structural functions for neurons. Calcium rise in astrocytes propagating to neurons was the first demonstration of direct interaction between the two cell types. Since then, calcium has been widely used, not only as an indicator of astrocytic activity but also as a stimulator switch to control astrocyte physiology. As a result, astrocytes have been elevated from auxiliaries to neurons, to cells involved in processing synaptic information. Curiously, while there is evidence that astrocytes play an important role in synaptic plasticity, the data relating to calcium's pivotal role are inconsistent. In this review, we will detail the various mechanisms of calcium flux in astrocytes, then briefly present the calcium-dependent mechanisms of gliotransmitter release. Finally, we will discuss the role of calcium in plasticity and present alternative explanations that could reconcile the conflicting results published recently.
Assuntos
Astrócitos/fisiologia , Sinalização do Cálcio/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Humanos , Neurotransmissores/metabolismo , Transmissão Sináptica/fisiologiaRESUMO
BACKGROUND: Epidemiological studies have linked maternal infection during pregnancy to later development of neuropsychiatric disorders in the offspring. In mice, experimental inflammation during embryonic development impairs behavioral and cognitive performances in adulthood. Synaptic dysfunctions may be at the origin of cognitive impairments, however the link between prenatal inflammation and synaptic defects remains to be established. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we show that prenatal alteration of microglial function, including inflammation, induces delayed synaptic dysfunction in the adult. DAP12 is a microglial signaling protein expressed around birth, mutations of which in the human induces the Nasu-Hakola disease, characterized by early dementia. We presently report that synaptic excitatory currents in mice bearing a loss-of-function mutation in the DAP12 gene (DAP12(KI) mice) display enhanced relative contribution of AMPA. Furthermore, neurons from DAP12(KI) P0 pups cultured without microglia develop similar synaptic alterations, suggesting that a prenatal dysfunction of microglia may impact synaptic function in the adult. As we observed that DAP12(KI) microglia overexpress genes for IL1beta, IL6 and NOS2, which are inflammatory proteins, we analyzed the impact of a pharmacologically-induced prenatal inflammation on synaptic function. Maternal injection of lipopolysaccharides induced activation of microglia at birth and alteration of glutamatergic synapses in the adult offspring. Finally, neurons cultured from neonates born to inflamed mothers and cultured without microglia also displayed altered neuronal activity. CONCLUSION/SIGNIFICANCE: Our results demonstrate that prenatal inflammation is sufficient to induce synaptic alterations with delay. We propose that these alterations triggered by prenatal activation of microglia provide a cellular basis for the neuropsychiatric defects induced by prenatal inflammation.
Assuntos
Ácido Glutâmico/metabolismo , Hipocampo/embriologia , Microglia/metabolismo , Sinapses/fisiologia , Transmissão Sináptica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Embrião de Mamíferos/metabolismo , Feminino , Hipocampo/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Gravidez , Receptores de AMPA/metabolismoRESUMO
Microglia have long been characterized by their immune function in the nervous system and are still mainly considered in a beneficial versus detrimental dialectic. However a review of literature enables to shed novel lights on microglial function under physiological conditions. It is now relevant to position these cells as full time partners of neuronal function and more specifically of synaptogenesis and developmental apoptosis. Indeed, microglia can actively control neuronal death. It has actually been shown in retina that microglial nerve growth factor (NGF) is necessary for the developmental apoptosis to occur. Similarly, in cerebellum, microglia induces developmental Purkinje cells death through respiratory burst. Furthermore, in spinal cord, microglial TNFalpha commits motoneurons to a neurotrophic dependent developmental apoptosis. Microglia can also control synaptogenesis. This is suggested by the fact that a mutation in KARAP/DAP12, a key protein of microglial activation impacts synaptic functions in hippocampus, and synapses protein content. In addition it has been now demonstrated that microglial brain-derived neurotrophin factor (BDNF) directly regulates synaptic properties in spinal cord. In conclusion, microglia can control neuronal function under physiological conditions and it is known that neuronal activity reciprocally controls microglial activation. We will discuss the importance of this cross-talk which allows microglia to orchestrate the balance between synaptogenesis and neuronal death occurring during development or injuries.