RESUMO
BACKGROUND: Multicapillary column ion-mobility spectrometry (MCC-IMS) may identify volatile components in exhaled gas. The authors therefore used MCC-IMS to evaluate exhaled gas in a rat model of sepsis, inflammation, and hemorrhagic shock. METHODS: Male Sprague-Dawley rats were anesthetized and ventilated via tracheostomy for 10 h or until death. Sepsis was induced by cecal ligation and incision in 10 rats; a sham operation was performed in 10 others. In 10 other rats, endotoxemia was induced by intravenous administration of 10 mg/kg lipopolysaccharide. In a final 10 rats, hemorrhagic shock was induced to a mean arterial pressure of 35 ± 5 mmHg. Exhaled gas was analyzed with MCC-IMS, and volatile compounds were identified using the BS-MCC/IMS-analytes database (Version 1209; B&S Analytik, Dortmund, Germany). RESULTS: All sham animals survived the observation period, whereas mean survival time was 7.9 h in the septic animals, 9.1 h in endotoxemic animals, and 2.5 h in hemorrhagic shock. Volatile compounds showed statistically significant differences in septic and endotoxemic rats compared with sham rats for 3-pentanone and acetone. Endotoxic rats differed significantly from sham for 1-propanol, butanal, acetophenone, 1,2-butandiol, and 2-hexanone. Statistically significant differences were observed between septic and endotoxemic rats for butanal, 3-pentanone, and 2-hexanone. 2-Hexanone differed from all other groups in the rats with shock. CONCLUSIONS: Breath analysis of expired organic compounds differed significantly in septic, inflammation, and sham rats. MCC-IMS of exhaled breath deserves additional study as a noninvasive approach for distinguishing sepsis from inflammation.
Assuntos
Testes Respiratórios/métodos , Inflamação/metabolismo , Sepse/metabolismo , Análise Espectral/métodos , Compostos Orgânicos Voláteis/metabolismo , Animais , Modelos Animais de Doenças , Expiração , Inflamação/diagnóstico , Íons , Masculino , Ratos , Ratos Sprague-Dawley , Sepse/diagnóstico , Choque Hemorrágico/metabolismoRESUMO
Electrospray ionization mass spectrometry (ESI-MS) has emerged as an indispensable tool in the field of lipidomics. Despite the growing interest in lipid analysis, there are only a few software tools available for data evaluation, as compared for example to proteomics applications. This makes comprehensive lipid analysis a complex challenge. Thus, a computational tool for harnessing the raw data from liquid chromatography/mass spectrometry (LC/MS) experiments was developed in this study and is available from the authors on request. The Profiler-Merger-Viewer tool is a software package for automatic processing of raw-data from data-dependent experiments, measured by high-performance liquid chromatography hyphenated to electrospray ionization hybrid linear ion trap Fourier transform mass spectrometry (FTICR-MS and Orbitrap) in single and multi-stage mode. The software contains three parts: processing of the raw data by Profiler for lipid identification, summarizing of replicate measurements by Merger and visualization of all relevant data (chromatograms as well as mass spectra) for validation of the results by Viewer. The tool is easily accessible, since it is implemented in Java and uses Microsoft Excel (XLS) as output format. The motivation was to develop a tool which supports and accelerates the manual data evaluation (identification and relative quantification) significantly but does not make a complete data analysis within a black-box system. The software's mode of operation, usage and options will be demonstrated on the basis of a lipid extract of baker's yeast (S. cerevisiae). In this study, we focused on three important representatives of lipids: glycerophospholipids, lyso-glycerophospholipids and free fatty acids.
Assuntos
Mineração de Dados , Glicerofosfolipídeos/análise , Saccharomyces cerevisiae/química , Software , Cromatografia Líquida , Espectrometria de MassasRESUMO
Over the past years, ion mobility spectrometry (IMS) as a well established method within the fields of military and security has gained more and more interest for biological and medical applications. This highly sensitive and rapid separation technique was crucially enhanced by a multi-capillary column (MCC), pre-separation for complex samples. In order to unambiguously identify compounds in a complex sample, like breath, by IMS, a reference database is mandatory. To obtain a first set of reference data, 16 selected volatile organic substances were examined by MCC-IMS and comparatively analyzed by the standard technique for breath research, thermal desorption-gas chromatography-mass spectrometry. Experimentally determined MCC and GC retention times of these 16 compounds were aligned and their relation was expressed in a mathematical function. Using this function, a prognosis of the GC retention time can be given very precisely according to a recorded MCC retention time and vice versa. Thus, unknown MCC-IMS peaks from biological samples can be assigned-after alignment via the estimated GC retention time-to analytes identified by GC/MS from equivalent accomplished data. One example of applying the peak assignment strategy to a real breath sample is shown in detail.
Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/química , Testes Respiratórios , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Cromatografia Gasosa-Espectrometria de Massas/métodos , ÍonsRESUMO
Multicapillary column (MCC) ion mobility spectrometers (IMS) are increasingly in demand for medical diagnosis, biological applications and process control. In a MCC-IMS, volatile compounds are differentiated by specific retention time and ion mobility when rapid preseparation techniques are applied, e.g. for the analysis of complex and humid samples. Therefore, high accuracy in the determination of both parameters is required for reliable identification of the signals. The retention time in the MCC is the subject of the present investigation because, for such columns, small deviations in temperature and flow velocity may cause significant changes in retention time. Therefore, a universal correction procedure would be a helpful tool to increase the accuracy of the data obtained from a gas-chromatographic preseparation. Although the effect of the carrier gas flow velocity and temperature on retention time is not linear, it could be demonstrated that a linear alignment can compensate for the changes in retention time due to common minor deviations of both the carrier gas flow velocity and the column temperature around the MCC-IMS standard operation conditions. Therefore, an effective linear alignment procedure for the correction of those deviations has been developed from the analyses of defined gas mixtures under various experimental conditions. This procedure was then applied to data sets generated from real breath analyses obtained in clinical studies using different instruments at different measuring sites for validation. The variation in the retention time of known signals, especially for compounds with higher retention times, was significantly improved. The alignment of the retention time--an indispensable procedure to achieve a more precise identification of analytes--using the proposed method reduces the random error caused by small accidental deviations in column temperature and flow velocity significantly.