Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Nature ; 626(7998): 294-299, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326595

RESUMO

An essential ingredient for the production of Majorana fermions for use in quantum computing is topological superconductivity1,2. As bulk topological superconductors remain elusive, the most promising approaches exploit proximity-induced superconductivity3, making systems fragile and difficult to realize4-7. Due to their intrinsic topology8, Weyl semimetals are also potential candidates1,2, but have always been connected with bulk superconductivity, leaving the possibility of intrinsic superconductivity of their topological surface states, the Fermi arcs, practically without attention, even from the theory side. Here, by means of angle-resolved photoemission spectroscopy and ab initio calculations, we identify topological Fermi arcs on two opposing surfaces of the non-centrosymmetric Weyl material trigonal PtBi2 (ref. 9). We show these states become superconducting at temperatures around 10 K. Remarkably, the corresponding coherence peaks appear as the strongest and sharpest excitations ever detected by photoemission from solids. Our findings indicate that superconductivity in PtBi2 can occur exclusively at the surface, rendering it a possible platform to host Majorana modes in intrinsically topological superconductor-normal metal-superconductor Josephson junctions.

2.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38597316

RESUMO

Pentacene is one of the most investigated organic semiconductors. It is well known that the motion of excitons in pentacene and other organic semiconductors is determined by inter-molecular exciton coupling based on charge-transfer processes. In the present study, we demonstrate the impact of the admixture of tetracene, which has a larger band gap and interrupts the pentacene-pentacene interaction, on the exciton behavior in pentacene. Using a combination of optical absorption and electron energy-loss spectroscopy, we show that both the Davydov splitting and the exciton band width in pentacene strongly decrease with increasing tetracene concentration, while the decrease of the exciton band width is substantially larger.

3.
Nano Lett ; 23(4): 1229-1235, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36720048

RESUMO

Symmetry breaking in topological matter has become in recent years a key concept in condensed matter physics to unveil novel electronic states. In this work, we predict that broken inversion symmetry and strong spin-orbit coupling in trigonal PtBi2 lead to a type-I Weyl semimetal band structure. Transport measurements show an unusually robust low dimensional superconductivity in thin exfoliated flakes up to 126 nm in thickness (with Tc ∼ 275-400 mK), which constitutes the first report and study of unambiguous superconductivity in a type-I Weyl semimetal. Remarkably, a Berezinskii-Kosterlitz-Thouless transition with TBKT ∼ 310 mK is revealed in up to 60 nm thick flakes, which is nearly an order of magnitude thicker than the rare examples of two-dimensional superconductors exhibiting such a transition. This makes PtBi2 an ideal platform to study low dimensional and unconventional superconductivity in topological semimetals.

4.
Phys Rev Lett ; 131(25): 256701, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181358

RESUMO

Quantum spin liquids (QSLs) are novel phases of matter which remain quantum disordered even at the lowest temperature. They are characterized by emergent gauge fields and fractionalized quasiparticles. Here we show that the sub-kelvin thermal transport of the three-dimensional S=1/2 hyperhyperkagome quantum magnet PbCuTe_{2}O_{6} is governed by a sizeable charge-neutral fermionic contribution which is compatible with the itinerant fractionalized excitations of a spinon Fermi surface. We demonstrate that this hallmark feature of the QSL state is remarkably robust against sample crystallinity, large magnetic field, and field-induced magnetic order, ruling out the imitation of QSL features by extrinsic effects. Our findings thus reveal the characteristic low-energy features of PbCuTe_{2}O_{6} which qualify this compound as a true QSL material.

5.
Nanotechnology ; 34(49)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37651987

RESUMO

Since the transmission electron microscope (TEM) has the capacity to observe the atomic structure of materials,in situTEM synthesis methods are uniquely suited to advance our fundamental understanding of the bottom-up dynamics that drive the formation of nanostructures. E-beam induced fragmentation (potentially identified as a manifestation of Coulomb explosion) and electron stimulated desorption are phenomena that have received attention because they trigger chemical and physical reactions that can lead to the production of various nanostructures. Here we report a simple TEM protocol implemented on WO2.9microparticles supported on thin amorphous carbon substrates. The method produces various nanostructures such as WC nanoparticles, WC supported films and others. Nevertheless, we focus on the gradual graphitization and gasification of the C substrate as it interacts with the material expelled from the WO2.9microparticles. The progressive gasification transforms the substrate from amorphous C down to hybrid graphitic nanoribbons incorporating W nanoparticles. We think these observations open interesting possibilities for the synthesis of 2D nanomaterials in the TEM.

6.
Nano Lett ; 22(9): 3550-3556, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35427144

RESUMO

A method is presented to use atomic force microscopy to measure the cleavage energy of van der Waals materials and similar quasi-two-dimensional materials. The cleavage energy of graphite is measured to be 0.36 J/m2, in good agreement with literature data. The same method yields a cleavage energy of 0.6 J/m2 for MoS2 as a representative of the dichalcogenides. In the case of the weak topological insulator Bi14Rh3I9 no cleavage energy is obtained, although cleavage is successful with an adapted approach. The cleavage energies of these materials are evaluated by means of density-functional calculations and literature data. This further validates the presented method and sets an upper limit of about 0.7 J/m2 to the cleavage energy that can be measured by the present setup. In addition, this method can be used as a tool for manipulating exfoliated flakes, prior to or after contacting, which may open a new route for the fabrication of nanostructures.

7.
Phys Rev Lett ; 128(3): 036402, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35119899

RESUMO

The entanglement of charge density wave (CDW), superconductivity, and topologically nontrivial electronic structure has recently been discovered in the kagome metal AV_{3}Sb_{5} (A=K, Rb, Cs) family. With high-resolution angle-resolved photoemission spectroscopy, we study the electronic properties of CDW and superconductivity in CsV_{3}Sb_{5}. The spectra around K[over ¯] is found to exhibit a peak-dip-hump structure associated with two separate branches of dispersion, demonstrating the isotropic CDW gap opening below E_{F}. The peak-dip-hump line shape is contributed by linearly dispersive Dirac bands in the lower branch and a dispersionless flat band close to E_{F} in the upper branch. The electronic instability via Fermi surface nesting could play a role in determining these CDW-related features. The superconducting gap of ∼0.4 meV is observed on both the electron band around Γ[over ¯] and the flat band around K[over ¯], implying the multiband superconductivity. The finite density of states at E_{F} in the CDW phase is most likely in favor of the emergence of multiband superconductivity, particularly the enhanced density of states associated with the flat band. Our results not only shed light on the controversial origin of the CDW, but also offer insights into the relationship between CDW and superconductivity.

8.
J Am Chem Soc ; 143(43): 18139-18149, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34669376

RESUMO

Lanthanide dimetallofullerenes with single-electron M-M bonds are an important class of single molecular magnets and qubit candidates, but stabilization of their unique electronic and spin structure in the form of a neutral molecule requires functionalization of the fullerene cage with a single radical group. The lack of selectivity of the currently available procedure results in a complicated and tedious separation process. Here we demonstrate that electrophilic trifluoromethylation of a mixture of metallofullerene anions with Umemoto reagent II is highly selective toward M2@C80- (M = Tb, Y) anions, yielding M2@C80(CF3) monoadducts as the main reaction product. Single-crystal X-ray diffraction study proved attachment of the CF3 group to the pentagon/hexagon/hexagon junction and revealed that positions of metal atoms inside the fullerene cage in the cocrystal with NiOEP are strongly related to the position of the porphyrin moieties. Magnetic characterization of Tb2@C80(CF3) showed that it is a robust single-molecule magnet with broad magnetic hysteresis, 100 s blocking temperature of 25 K, and the relaxation barrier of 801(4) K, corresponding to the flipping of the Tb magnetic moment in the strongly ferromagnetically coupled [Tb3+-e-Tb3+] spin system.

9.
Inorg Chem ; 60(7): 4497-4507, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33733754

RESUMO

We report the results of the experimental and theoretical study of the magnetic anisotropy of single crystals of the Co-doped lithium nitride Li2(Li1-xCox)N with x = 0.005, 0.01, and 0.02. It was shown recently that doping of the Li3N crystalline matrix with 3d transition metal (TM) ions yields superior magnetic properties comparable with the strongly anisotropic single-molecule magnetism of rare-earth complexes. Our combined electron spin resonance (ESR) and THz spectroscopic investigations of Li2(Li1-xCox)N in a very broad frequency range up to 1.7 THz and in magnetic fields up to 16 T enable an accurate determination of the energies of the spin levels of the ground state multiplet Ŝ = 1 of the paramagnetic Co(I) ion. In particular, we find a very large zero field splitting (ZFS) of almost 1 THz (∼4 meV or 33 cm-1) between the ground-state singlet and the first excited doublet state. On the computational side, ab initio many-body quantum chemistry calculations reveal a ZFS gap consistent with the experimental value. Such a large ZFS energy yields a very strong single-ion magnetic anisotropy of easy-plane type resembling that of rare-earth ions. Its microscopic origin is the unusual linear coordination of the Co(I) ions in Li2(Li1-xCox)N with two nitrogen ligands. Our calculations also evidence a strong 3d-4s hybridization of the electronic shells resulting in significant electron spin density at the 59Co nuclei, which may be responsible for the experimentally observed extraordinary large hyperfine structure of the ESR signals. Altogether, our experimental spectroscopic and computational results enable comprehensive insights into the remarkable properties of the Li2[Li1-x(TM)x]N magnets on the microscopic level.

10.
Phys Chem Chem Phys ; 23(33): 18206-18220, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34612284

RESUMO

Endohedral fullerenes are promising materials for the quantum information and quantum processing due to the unique properties of the electron-nuclear spin system well isolated from the environment inside the fullerene cage. The endofullerene Sc2@C80(CH2Ph) features a strong hyperfine interaction between one electron spin 1/2 localized at the Sc2 dimer and two equivalent 45Sc nuclear spins 7/2, which yields 64 well resolved EPR transitions. We report a comprehensive analysis of the temperature dependence of the EPR spectrum of Sc2@C80(CH2Ph) dissolved in d-toluene measured in a wide temperature range above and below the melting point. The nature of the electron spin coherence phase memory is investigated. The properties of all resonance lines in a liquid phase were treated within the model of the free rotational diffusion. Both, analytical expressions and numerical examination provide an excellent agreement between the experimental and simulated spectra. A detailed study of the experimental data confirms the assumption of the independent motions of the fullerene cage and the Sc2 core. The data obtained show three regimes of molecular motion detected at different temperatures: the free rotation of both the fullerene cage and its bi-metal core, the motion of the core in the frozen fullerene cage, and, finally, a state with a fixed structure of both parts of the metallofullerene molecules. The data analysis reveals a significant nuclear quadrupole interaction playing an important role for the mixing of the different nuclear spin multiplets.

11.
Phys Rev Lett ; 124(19): 197201, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32469595

RESUMO

The magnetic properties of the van der Waals magnetic topological insulators MnBi_{2}Te_{4} and MnBi_{4}Te_{7} are investigated by magnetotransport measurements. We evidence that the relative strength of the interlayer exchange coupling J to the uniaxial anisotropy K controls a transition from an A-type antiferromagnetic order to a ferromagneticlike metamagnetic state. A bilayer Stoner-Wohlfarth model allows us to describe this evolution, as well as the typical angular dependence of specific signatures, such as the spin-flop transition of the uniaxial antiferromagnet and the switching field of the metamagnet.

12.
Phys Rev Lett ; 125(6): 067001, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32845654

RESUMO

We report a systematic elastoresistivity study on LaFe_{1-x}Co_{x}AsO single crystals, which have well separated structural and magnetic transition lines. All crystals show a Curie-Weiss-like nematic susceptibility in the tetragonal phase. The extracted nematic temperature is monotonically suppressed upon cobalt doping, and changes sign around the optimal doping level, indicating a possible nematic quantum critical point beneath the superconducting dome. The amplitude of the nematic susceptibility shows a peculiar double-peak feature. This could be explained by a combined effect of different contributions to the nematic susceptibility, which are amplified at separated doping levels of LaFe_{1-x}Co_{x}AsO.

13.
Chemistry ; 26(11): 2436-2449, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31774196

RESUMO

The substitution of scandium in fullerene single-molecule magnets (SMMs) DySc2 N@C80 and Dy2 ScN@C80 by lutetium has been studied to explore the influence of the diamagnetic metal on the SMM performance of dysprosium nitride clusterfullerenes. The use of lutetium led to an improved SMM performance of DyLu2 N@C80 , which shows a higher blocking temperature of magnetization (TB =9.5 K), longer relaxation times, and broader hysteresis than DySc2 N@C80 (TB =6.9 K). At the same time, Dy2 LuN@C80 was found to have a similar blocking temperature of magnetization to Dy2 ScN@C80 (TB =8 K), but substantially different interactions between the magnetic moments of the dysprosium ions in the Dy2 MN clusters. Surprisingly, although the intramolecular dipolar interactions in Dy2 LuN@C80 and Dy2 ScN@C80 are of similar strength, the exchange interactions in Dy2 LuN@C80 are close to zero. Analysis of the low-frequency molecular and lattice vibrations showed strong mixing of the lattice modes and endohedral cluster librations in k-space. This mixing simplifies the spin-lattice relaxation by conserving the momentum during the spin flip and helping to distribute the moment and energy further into the lattice.

14.
Inorg Chem ; 59(13): 9108-9115, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32543185

RESUMO

Phase transformations upon delithiation in layered oxides with the NaCrS2 structure type are widely studied for numerous combinations of 3d transition metals because of the application of LiCoO2 and its derivatives as cathode materials in rechargeable Li-ion batteries. However, complete replacement of 3d by 4d transition metals still yields phenomena never seen in compounds containing 3d metals only. In the present work, the structural evolution of Li-rich O3-Li(Li0.2Rh0.8)O2, having a mixed occupancy of 20% Li and 80% Rh in the metal-O slabs, was studied during electrochemical Li removal and insertion and compared with the isostructural stoichiometric LiRhO2. The latter compound undergoes a transformation from the layered NaCrS2 to the tunnel-like rutile-ramsdellite intergrowth structure of the γ-MnO2 type. Partial replacement of Rh by Li, in contrast, completely prevents this transition, resulting in a reversible cell expansion and shrinkage within the layered structure upon (de)lithiation. Moreover, no anomalously short Rh-O and O-O distances were observed in Lix≈0(Li0.2Rh0.8)O2 with the Rh4.75+ intermediate valence state at 4.8 V, in contrast to Lix≈0RhO2 with Rh4+ at 4.2 V, as confirmed by operando synchrotron X-ray diffraction and extended X-ray absorption fine structure studies. We believe that the difference in the Li-O and Rh-O covalency is responsible for the observed structural stabilization. The longer and more ionic Li-O bonds in the (Li,Rh)O2 layers impede the shortening of O-O distances needed for transformation to the γ-MnO2 type because of a higher negative charge on O anions connected to Li cations and the stronger electrostatic repulsion between them.

15.
Inorg Chem ; 59(23): 16913-16923, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33205960

RESUMO

We present a systematic study of the evolution of structural parameters and electronic correlations as a function of 3d band filling in a single crystal series of BaT2As2 (T = Cr-Cu). The structure trends are discussed in relation to the orbital occupation of the corresponding d elements supported by calculations of the charge density and electron localization function. Analysis of our specific heat data yields the mass enhancement (m*/mb) throughout the series. By combining the structural data with the mass enhancement values, we find that the decrease in m*/mb for n > 5 follows an increase of the crystal field splitting, determined by the progressive distortion of the As-T-As angle from the ideal tetrahedral environment. This study finds a strong interplay between crystal structure, bonding behavior, band filling, and electronic properties.

16.
Proc Natl Acad Sci U S A ; 114(47): 12425-12429, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109291

RESUMO

The superconducting phase in iron-based high-[Formula: see text] superconductors (FeSC), as in other unconventional superconductors such as the cuprates, neighbors a magnetically ordered one in the phase diagram. This proximity hints at the importance of electron correlation effects in these materials, and Hund's exchange interaction has been suggested to be the dominant correlation effect in FeSCs because of their multiband nature. By this reasoning, correlation should be strongest for materials closest to a half-filled [Formula: see text] electron shell (Mn compounds, hole-doped FeSCs) and decrease for systems with both higher (electron-doped FeSCs) and lower (Cr-pnictides) [Formula: see text] counts. Here we address the strength of correlation effects in nonsuperconducting antiferromagnetic BaCr2As2 by means of angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. This combination provides us with two handles on the strength of correlation: First, a comparison of the experimental and calculated effective masses yields the correlation-induced mass renormalization. In addition, the lifetime broadening of the experimentally observed dispersions provides another measure of the correlation strength. Both approaches reveal a reduction of electron correlation in BaCr2As2 with respect to systems with a [Formula: see text] count closer to five. Our results thereby support the theoretical predictions that Hund's exchange interaction is important in these materials.

17.
Molecules ; 25(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143351

RESUMO

Carbon nanotube yarns (CNY) are a novel carbonaceous material and have received a great deal of interest since the beginning of the 21st century. CNY are of particular interest due to their useful heat conducting, electrical conducting, and mechanical properties. The electrical conductivity of carbon nanotube yarns can also be influenced by functionalization and annealing. A systematical study of this post synthetic treatment will assist in understanding what factors influences the conductivity of these materials. In this investigation, it is shown that the electrical conductivity can be increased by a factor of 2 and 5.5 through functionalization with acids and high temperature annealing respectively. The scale of the enhancement is dependent on the reducing of intertube space in case of functionalization. For annealing, not only is the highly graphitic structure of the carbon nanotubes (CNT) important, but it is also shown to influence the residual amorphous carbon in the structure. The promising results of this study can help to utilize CNY as a replacement for common materials in the field of electrical wiring.


Assuntos
Nanotubos de Carbono/química , Condutividade Elétrica , Nanotecnologia/métodos
18.
Angew Chem Int Ed Engl ; 59(14): 5756-5764, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31860759

RESUMO

Magnetic hysteresis is demonstrated for monolayers of the single-molecule magnet (SMM) Dy2 ScN@C80 deposited on Au(111), Ag(100), and MgO|Ag(100) surfaces by vacuum sublimation. The topography and electronic structure of Dy2 ScN@C80 adsorbed on Au(111) were studied by STM. X-ray magnetic CD studies show that the Dy2 ScN@C80 monolayers exhibit similarly broad magnetic hysteresis independent on the substrate used, but the orientation of the Dy2 ScN cluster depends strongly on the surface. DFT calculations show that the extent of the electronic interaction of the fullerene molecules with the surface is increasing dramatically from MgO to Au(111) and Ag(100). However, the charge redistribution at the fullerene-surface interface is fully absorbed by the carbon cage, leaving the state of the endohedral cluster intact. This Faraday cage effect of the fullerene preserves the magnetic bistability of fullerene-SMMs on conducting substrates and facilitates their application in molecular spintronics.

19.
Small ; 15(49): e1904315, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31709700

RESUMO

The magnetization dynamics of individual Fe-filled multiwall carbon-nanotubes (FeCNT), grown by chemical vapor deposition, are investigated by microresonator ferromagnetic resonance (FMR) and Brillouin light scattering (BLS) microscopy and corroborated by micromagnetic simulations. Currently, only static magnetometry measurements are available. They suggest that the FeCNTs consist of a single-crystalline Fe nanowire throughout the length. The number and structure of the FMR lines and the abrupt decay of the spin-wave transport seen in BLS indicate, however, that the Fe filling is not a single straight piece along the length. Therefore, a stepwise cutting procedure is applied in order to investigate the evolution of the ferromagnetic resonance lines as a function of the nanowire length. The results show that the FeCNT is indeed not homogeneous along the full length but is built from 300 to 400 nm long single-crystalline segments. These segments consist of magnetically high quality Fe nanowires with almost the bulk values of Fe and with a similar small damping in relation to thin films, promoting FeCNTs as appealing candidates for spin-wave transport in magnonic applications.

20.
Inorg Chem ; 58(10): 6659-6668, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31045349

RESUMO

Fine-tuning chemistry by doping with transition metals enables new perspectives for exploring Kitaev physics on a two-dimensional (2D) honeycomb lattice of α-RuCl3, which is promising in the field of quantum information protection and quantum computation. The key parameters to vary by doping are both Heisenberg and Kitaev components of the nearest-neighbor exchange interaction between the Jeff = 1/2 Ru3+ spins, depending strongly on the peculiarities of the crystal structure. Here, we present crystal growth by chemical vapor transport and structure elucidation of a solid solution series Ru1- xCr xCl3 (0 ≤ x ≤ 1), with Cr3+ ions coupled to the Ru3+ Kitaev host. The Cr3+ substitution preserves the honeycomb type lattice of α-RuCl3 and creates mixed occupancy of Ru/Cr sites without cationic order within the layers as confirmed by single-crystal X-ray diffraction and transmission electron microscopy investigations. In contrast to high-quality single crystals of α-RuCl3 with ABAB-stacked layers, the ternary compounds demonstrate a significant stacking disorder along the c-axis direction as evidenced by X-ray diffraction and high resolution scanning transmission electron microscopy (HR-STEM). Raman spectra of substituted samples are in line with the symmetry conservation of the parent lattice upon chromium doping. At the same time, our magnetic susceptibility data indicate that the Kitaev physics of α-RuCl3 is increasingly suppressed by the dominant spin-only driven magnetism of Cr3+ ( S = 3/2) in Ru1- xCr xCl3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA