RESUMO
AIMS: Pathological cardiac remodelling and subsequent heart failure represents an unmet clinical need. Long non-coding RNAs (lncRNAs) are emerging as crucial molecular orchestrators of disease processes, including that of heart diseases. Here, we report on the powerful therapeutic potential of the conserved lncRNA H19 in the treatment of pathological cardiac hypertrophy. METHOD AND RESULTS: Pressure overload-induced left ventricular cardiac remodelling revealed an up-regulation of H19 in the early phase but strong sustained repression upon reaching the decompensated phase of heart failure. The translational potential of H19 is highlighted by its repression in a large animal (pig) model of left ventricular hypertrophy, in diseased human heart samples, in human stem cell-derived cardiomyocytes and in human engineered heart tissue in response to afterload enhancement. Pressure overload-induced cardiac hypertrophy in H19 knock-out mice was aggravated compared to wild-type mice. In contrast, vector-based, cardiomyocyte-directed gene therapy using murine and human H19 strongly attenuated heart failure even when cardiac hypertrophy was already established. Mechanistically, using microarray, gene set enrichment analyses and Chromatin ImmunoPrecipitation DNA-Sequencing, we identified a link between H19 and pro-hypertrophic nuclear factor of activated T cells (NFAT) signalling. H19 physically interacts with the polycomb repressive complex 2 to suppress H3K27 tri-methylation of the anti-hypertrophic Tescalcin locus which in turn leads to reduced NFAT expression and activity. CONCLUSION: H19 is highly conserved and down-regulated in failing hearts from mice, pigs and humans. H19 gene therapy prevents and reverses experimental pressure-overload-induced heart failure. H19 acts as an anti-hypertrophic lncRNA and represents a promising therapeutic target to combat pathological cardiac remodelling.
Assuntos
Cardiopatias , Insuficiência Cardíaca , RNA Longo não Codificante , Animais , Cardiomegalia/genética , Modelos Animais de Doenças , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Humanos , Hipertrofia Ventricular Esquerda , Camundongos , Camundongos Knockout , Miócitos Cardíacos , RNA Longo não Codificante/genética , SuínosRESUMO
AIMS: Heart failure (HF) after myocardial infarction (MI) is a major cause of morbidity and mortality. We sought to investigate the functional importance of cardiac iron status after MI and the potential of pre-emptive iron supplementation in preventing cardiac iron deficiency (ID) and attenuating left ventricular (LV) remodelling. METHODS AND RESULTS: MI was induced in C57BL/6J male mice by left anterior descending coronary artery ligation. Cardiac iron status in the non-infarcted LV myocardium was dynamically regulated after MI: non-haem iron and ferritin increased at 4 weeks but decreased at 24 weeks after MI. Cardiac ID at 24 weeks was associated with reduced expression of iron-dependent electron transport chain (ETC) Complex I compared with sham-operated mice. Hepcidin expression in the non-infarcted LV myocardium was elevated at 4 weeks and suppressed at 24 weeks. Hepcidin suppression at 24 weeks was accompanied by more abundant expression of membrane-localized ferroportin, the iron exporter, in the non-infarcted LV myocardium. Notably, similarly dysregulated iron homeostasis was observed in LV myocardium from failing human hearts, which displayed lower iron content, reduced hepcidin expression, and increased membrane-bound ferroportin. Injecting ferric carboxymaltose (15 µg/g body weight) intravenously at 12, 16, and 20 weeks after MI preserved cardiac iron content and attenuated LV remodelling and dysfunction at 24 weeks compared with saline-injected mice. CONCLUSION: We demonstrate, for the first time, that dynamic changes in cardiac iron status after MI are associated with local hepcidin suppression, leading to cardiac ID long term after MI. Pre-emptive iron supplementation maintained cardiac iron content and attenuated adverse remodelling after MI. Our results identify the spontaneous development of cardiac ID as a novel disease mechanism and therapeutic target in post-infarction LV remodelling and HF.