Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(14): 7876-7883, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29905472

RESUMO

Layered FeII-FeIII hydroxide chloride (chloride green rust, GRCl) has high reactivity toward reducible pollutants such as chlorinated solvents. However, this reactive solid is prone to dissolution, and hence loss of reactivity, during storage and handling. In this study, adsorption of silicate (Si) to GRCl was tested for its ability to minimize GRCl dissolution and to inhibit reduction of carbon tetrachloride (CT). Silicate adsorbed with high affinity to GRCl yielding a sorption maximum of 0.026 g of Si/g of GRCl. In the absence of Si, the pseudo-first-order rate constant for CT dehalogenation by GRCl was 2.1 h-1, demonstrating very high reactivity of GRCl but with substantial FeII dissolution up to 2.5 mM. When Si was adsorbed to GRCl, CT dehalogenation was blocked and FeII dissolution extent was reduced by a factor of 28. The addition of glycine (Gly) was tested for reactivation of the Si-blocked GRCl for CT dehalogenation. At 30 mM Gly, partial reactivation of the GRCl was observed with pseudo-first-order rate constant for CT reduction of 0.075 h-1. This blockage and reactivation of GRCl reactivity demonstrates that it is possible to design a switch for GRCl to control its stability and reactivity under anoxic conditions.


Assuntos
Tetracloreto de Carbono , Ferro , Compostos Ferrosos , Glicina , Hidróxidos , Oxirredução , Silicatos
2.
Environ Sci Technol ; 51(6): 3445-3452, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28244752

RESUMO

Layered FeII-FeIII hydroxides (green rusts, GRs) are promising reactants for reductive dechlorination of chlorinated solvents due to high reaction rates and the opportunity to inject reactive slurries of the compounds into contaminant plumes. However, it is necessary to develop strategies that reduce the formation of toxic byproducts such as chloroform (CF). In this study, carbon tetrachloride (CT) dehalogenation by the chloride form of GR (GRCl) was tested in the presence of glycine (GLY) and other selected amino acids. GLY, alanine (ALA), and serine (SER) all resulted in remarkable suppression of CF formation with only ∼10% of CF recovery while sarcosine (SAR) showed insignificant effects. For two nonamino acid buffers, TRIS had little effect while HEPES resulted in a 40 times lower rate constant compared to experiments in which no buffer was added. The FeII complexing properties of the amino acids and buffers caused variable extents of GRCl dissolution which was linearly correlated with CF suppression and dehalogenation rate. We hypothesize that the CF suppression seen for amino acids is caused by stabilization of carbene intermediates via the carbonyl group. Different effects on CF suppression and CT dehalogenation rate were expected because of the different structural and chemical properties of the amino acids.


Assuntos
Tetracloreto de Carbono/química , Clorofórmio/química , Aminoácidos , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA