Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(15): 25974-25984, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236796

RESUMO

The need for wideband metamaterial absorbers (WBMA) for applications other than sensing and filtering has demanded modifications to the conventional three-layer metal-insulator-metal (MIM) absorber configuration. This modification often results in complex geometries and an increased number of layers requiring complex lithographic processes for fabrication. Here, we show that a metamaterial absorber with rectangular geometry in the simple MIM configuration can provide wideband absorption covering the ultraviolet and near-infrared spectral range. Due to its asymmetric nature, the WBMA is sensitive to the polarization of the incident light and independent of the angle of incidence up to about 45° depending on the polarization of the incident light. The characteristics of the WBMA presented here may be useful for applications such as detectors for wide spectral band applications.

2.
Nanotechnology ; 33(7)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34757955

RESUMO

In this paper we propose an original approach for the real-time detection of industrial organic pollutants in water. It is based on the monitoring of the time evolution of the electrical impedance of low-cost graphitic nanomembranes. The developed approach exploits the high sensitivity of the impedance of 2D graphene-related materials to the adsorbents. We examined sensitivity of the nanomembranes based on pyrolyzed photoresist, pyrolytic carbon (PyC), and multilayer graphene films. In order to realize a prototype of a sensor capable of monitoring the pollutants in water, the membranes were integrated into an ad hoc printed circuit board. We demonstrated the correlation between the sensitivity of the electric impedance to adsorbents and the structure of the nanomembranes, and revealed that the amorphous PyC, being most homogeneous and adhesive to the SiO2substrate, is the most promising in terms of integration into industrial pollutants sensors.

3.
Sensors (Basel) ; 20(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899745

RESUMO

Integration of living cells with nonbiological surfaces (substrates) of sensors, scaffolds, and implants implies severe restrictions on the interface quality and properties, which broadly cover all elements of the interaction between the living and artificial systems (materials, surface modifications, drug-eluting coatings, etc.). Substrate materials must support cellular viability, preserve sterility, and at the same time allow real-time analysis and control of cellular activity. We have compared new substrates based on graphene and pyrolytic carbon (PyC) for the cultivation of living cells. These are PyC films of nanometer thickness deposited on SiO2 and black silicon and graphene nanowall films composed of graphene flakes oriented perpendicular to the Si substrate. The structure, morphology, and interface properties of these substrates are analyzed in terms of their biocompatibility. The PyC demonstrates interface biocompatibility, promising for controlling cell proliferation and directional intercellular contact formation while as-grown graphene walls possess high hydrophobicity and poor biocompatibility. By performing experiments with C6 glioma cells we discovered that PyC is a cell-friendly coating that can be used without poly-l-lysine or other biopolymers for controlling cell adhesion. Thus, the opportunity to easily control the physical/chemical properties and nanotopography makes the PyC films a perfect candidate for the development of biosensors and 3D bioscaffolds.


Assuntos
Técnicas Biossensoriais , Células , Grafite , Dióxido de Silício , Carbono , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
4.
Materials (Basel) ; 15(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35160731

RESUMO

We report the performance of a graphene-enhanced THz grating fabricated by depositing a gold layer on the femtosecond micromachined SiO2 substrate. The morphology of the gold plated patterned substrate was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM), while the quality of the chemical vapor deposition (CVD) graphene was evaluated by Raman spectroscopy. The electromagnetic (EM) response of the metasurface comprising the graphene sheet and the gold plated substrate was studied by THz time domain spectroscopy in the 100 GHz-1 THz frequency range. We employed the finite elements method (FEM) to model the metasurface EM response by adjusting the ac conductivity of the gold layer covering the patterned SiO2 substrate to reproduce the measured transmission/reflection spectra. The results of the numerical simulation reveal the impact of the imperfectness of the gold layer on the performance of the THz metasurface. The experimental results are well described in terms of the Drude-Smith model of metal conductivity that takes into account the anisotropic scattering of the carriers in thin metal films.

5.
Nanomaterials (Basel) ; 11(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440905

RESUMO

We experimentally and theoretically investigated the effects of ionizing radiation on a stack of graphene sheets separated by polymethyl methacrylate (PMMA) slabs. The exceptional absorption ability of such a heterostructure in the THz range makes it promising for use in a graphene-based THz bolometer to be deployed in space. A hydrogen/carbon ion beam was used to simulate the action of protons and secondary ions on the device. We showed that the graphene sheets remain intact after irradiation with an intense 290 keV ion beam at the density of 1.5 × 1012 cm-2. However, the THz absorption ability of the graphene/PMMA multilayer can be substantially suppressed due to heating damage of the topmost PMMA slabs produced by carbon ions. By contrast, protons do not have this negative effect due to their much longer mean free pass in PMMA. Since the particles' flux at the geostationary orbit is significantly lower than that used in our experiments, we conclude that it cannot cause tangible damage of the graphene/PMMA based THz absorber. Our numerical simulations reveal that, at the geostationary orbit, the damaging of the graphene/PMMA multilayer due to the ions bombardment is sufficiently lower to affect the performance of the graphene/PMMA multilayer, the main working element of the THz bolometer, which remains unchanged for more than ten years.

6.
Nanomaterials (Basel) ; 11(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34684934

RESUMO

We propose an original technique for the fabrication of terahertz (THz) metasurfaces comprising a 3D printed regular array of polymer hemispheres covered with a thin conductive layer. We demonstrate that the deposition of a thin metal layer onto polymer hemispheres suppresses the THz reflectivity to almost zero, while the frequency range of such a suppression can be considerably broadened by enhancing the structure with graphene. Scaling up of the proposed technique makes it possible to tailor the electromagnetic responses of metasurfaces and allows for the fabrication of various components of THz photonics.

7.
ACS Appl Mater Interfaces ; 12(5): 6226-6233, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31912724

RESUMO

We demonstrate that predepositing a nanometrically thin nickel film on a dielectric surface is sufficient to transform an amorphous pyrolyzed photoresist film (PPF) into a graphitic film (GRF) enriched with nickel particles. The GRF shows 3 orders of magnitude higher carrier mobility than the amorphous PPF, whereas its electrical conductivity doubles after etching away the nickel remains. The pronounced 2D peak in the Raman spectrum, almost dispersionless absorbance in the spectral range of 750-2000 nm, and the saturable absorption coefficient indicate that GRF possesses a graphene-like band structure. The proposed cost-efficient and scalable synthesis route opens avenues toward fabrication of micron size patterned graphitic structures of any shape directly on a dielectric substrate. Having graphene-like transport and electrical properties at 20 times higher absorbance than the single-layer graphene, GRF is attractive for fabrication of fast modulators for optical radiation, bolometers, and other photonics and optoelectronic devices that require enhanced optical absorption.

8.
Nanoscale ; 12(45): 23166-23172, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33200163

RESUMO

We demonstrate radiation induced enhancement of both the in coupling of Raman excitation wavelength and Raman signal in plasmonic nanoparticle lattices. Rectangular nanoparticle lattices show two independently controllable lattice resonances, which we tune to be resonant with both the Raman excitation wavelength and the Raman transitions of rhodamine 6G molecules. We demonstrate that these narrow and intense resonances produced by the nanoparticle lattices allow for Raman transition specific enhancements. The system allows for independent tuning of both resonance conditions, enabling an efficient and versatile platform for Raman studies of various molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA