Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Mol Life Sci ; 79(10): 530, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167862

RESUMO

The endoplasmic reticulum exit of some polytopic plasma membrane proteins (PMPs) is controlled by arginin-based retention motifs. PRAF2, a gatekeeper which recognizes these motifs, was shown to retain the GABAB-receptor GB1 subunit in the ER. We report that PRAF2 can interact on a stoichiometric basis with both wild type and mutant F508del Cystic Fibrosis (CF) Transmembrane Conductance Regulator (CFTR), preventing the access of newly synthesized cargo to ER exit sites. Because of its lower abundance, compared to wild-type CFTR, CFTR-F508del recruitment into COPII vesicles is suppressed by the ER-resident PRAF2. We also demonstrate that some pharmacological chaperones that efficiently rescue CFTR-F508del loss of function in CF patients target CFTR-F508del retention by PRAF2 operating with various mechanisms. Our findings open new therapeutic perspectives for diseases caused by the impaired cell surface trafficking of mutant PMPs, which contain RXR-based retention motifs that might be recognized by PRAF2.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Mutação , Ácido gama-Aminobutírico/metabolismo
2.
Cell Mol Life Sci ; 79(9): 503, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36045259

RESUMO

Early recognition and enhanced degradation of misfolded proteins by the endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD) cause defective protein secretion and membrane targeting, as exemplified for Z-alpha-1-antitrypsin (Z-A1AT), responsible for alpha-1-antitrypsin deficiency (A1ATD) and F508del-CFTR (cystic fibrosis transmembrane conductance regulator) responsible for cystic fibrosis (CF). Prompted by our previous observation that decreasing Keratin 8 (K8) expression increased trafficking of F508del-CFTR to the plasma membrane, we investigated whether K8 impacts trafficking of soluble misfolded Z-A1AT protein. The subsequent goal of this study was to elucidate the mechanism underlying the K8-dependent regulation of protein trafficking, focusing on the ERAD pathway. The results show that diminishing K8 concentration in HeLa cells enhances secretion of both Z-A1AT and wild-type (WT) A1AT with a 13-fold and fourfold increase, respectively. K8 down-regulation triggers ER failure and cellular apoptosis when ER stress is jointly elicited by conditional expression of the µs heavy chains, as previously shown for Hrd1 knock-out. Simultaneous K8 silencing and Hrd1 knock-out did not show any synergistic effect, consistent with K8 acting in the Hrd1-governed ERAD step. Fractionation and co-immunoprecipitation experiments reveal that K8 is recruited to ERAD complexes containing Derlin2, Sel1 and Hrd1 proteins upon expression of Z/WT-A1AT and F508del-CFTR. Treatment of the cells with c407, a small molecule inhibiting K8 interaction, decreases K8 and Derlin2 recruitment to high-order ERAD complexes. This was associated with increased Z-A1AT secretion in both HeLa and Z-homozygous A1ATD patients' respiratory cells. Overall, we provide evidence that K8 acts as an ERAD modulator. It may play a scaffolding protein role for early-stage ERAD complexes, regulating Hrd1-governed retrotranslocation initiation/ubiquitination processes. Targeting K8-containing ERAD complexes is an attractive strategy for the pharmacotherapy of A1ATD.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Degradação Associada com o Retículo Endoplasmático , Queratina-8/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células HeLa , Humanos , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Cell Mol Life Sci ; 78(23): 7813-7829, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34714360

RESUMO

Protein misfolding is involved in a large number of diseases, among which cystic fibrosis. Complex intra- and inter-domain folding defects associated with mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, among which p.Phe508del (F508del), have recently become a therapeutical target. Clinically approved correctors such as VX-809, VX-661, and VX-445, rescue mutant protein. However, their binding sites and mechanisms of action are still incompletely understood. Blind docking onto the 3D structures of both the first membrane-spanning domain (MSD1) and the first nucleotide-binding domain (NBD1), followed by molecular dynamics simulations, revealed the presence of two potential VX-809 corrector binding sites which, when mutated, abrogated rescue. Network of amino acids in the lasso helix 2 and the intracellular loops ICL1 and ICL4 allosterically coupled MSD1 and NBD1. Corrector VX-445 also occupied two potential binding sites on MSD1 and NBD1, the latter being shared with VX-809. Binding of both correctors on MSD1 enhanced the allostery between MSD1 and NBD1, hence the increased efficacy of the corrector combination. These correctors improve both intra-domain folding by stabilizing fragile protein-lipid interfaces and inter-domain assembly via distant allosteric couplings. These results provide novel mechanistic insights into the rescue of misfolded proteins by small molecules.


Assuntos
Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Fibrose Cística/tratamento farmacológico , Mutação , Dobramento de Proteína/efeitos dos fármacos , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Sítios de Ligação , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Quimioterapia Combinada , Células HEK293 , Humanos , Domínios Proteicos , Estrutura Terciária de Proteína
4.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555865

RESUMO

ABC transporters are large membrane proteins sharing a complex architecture, which comprises two nucleotide-binding domains (NBDs) and two membrane-spanning domains (MSDs). These domains are susceptible to mutations affecting their folding and assembly. In the CFTR (ABCC7) protein, a groove has been highlighted in the MSD1 at the level of the membrane inner leaflet, containing both multiple mutations affecting folding and a binding site for pharmaco-chaperones that stabilize this region. This groove is also present in ABCB proteins, however it is covered by a short elbow helix, while in ABCC proteins it remains unprotected, due to a lower position of the elbow helix in the presence of the ABCC-specific lasso motif. Here, we identified a MSD1 second-site mutation located in the vicinity of the CFTR MSD1 groove that partially rescued the folding defect of cystic fibrosis causing mutations located within MSD1, while having no effect on the most frequent mutation, F508del, located within NBD1. A model of the mutated protein 3D structure suggests additional interaction between MSD1 and MSD2, strengthening the assembly at the level of the MSD intracellular loops. Altogether, these results provide insightful information in understanding key features of the folding and function of the CFTR protein in particular, and more generally, of type IV ABC transporters.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Estrutura Terciária de Proteína , Fibrose Cística/genética , Mutação , Membranas/metabolismo
5.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012204

RESUMO

Proteins interacting with CFTR and its mutants have been intensively studied using different experimental approaches. These studies provided information on the cellular processes leading to proper protein folding, routing to the plasma membrane, recycling, activation and degradation. Recently, new approaches have been developed based on the proximity labeling of protein partners or proteins in close vicinity and their subsequent identification by mass spectrometry. In this study, we evaluated TurboID- and APEX2-based proximity labeling of WT CFTR and compared the obtained data to those reported in databases. The CFTR-WT interactome was then compared to that of two CFTR (G551D and W1282X) mutants and the structurally unrelated potassium channel KCNK3. The two proximity labeling approaches identified both known and additional CFTR protein partners, including multiple SLC transporters. Proximity labeling approaches provided a more comprehensive picture of the CFTR interactome and improved our knowledge of the CFTR environment.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Dobramento de Proteína , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Espectrometria de Massas , Mutação
6.
Hum Mutat ; 39(4): 506-514, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29271547

RESUMO

Molecules correcting the trafficking (correctors) and gating defects (potentiators) of the cystic fibrosis causing mutation c.1521_1523delCTT (p.Phe508del) begin to be a useful treatment for CF patients bearing p.Phe508del. This mutation has been identified in different genetic contexts, alone or in combination with variants in cis. Until now, 21 exonic variants in cis of p.Phe508del have been identified, albeit at a low frequency. The aim of this study was to evaluate their impact on the efficacy of CFTR-directed corrector/potentiator therapy (Orkambi). The analysis by minigene showed that two out of 15 cis variants tested increased exon skipping (c.609C > T and c.2770G > A). Four cis variants were studied functionally in the absence of p.Phe508del, one of which was found to be deleterious for protein maturation c.1399C > T (p.Leu467Phe). In the presence of p.Phe508del, this variant was the only to prevent the response to Orkambi treatment. This study showed that some patients carrying p.Phe508del complex alleles are predicted to poorly respond to corrector/potentiator treatments. Our results underline the importance to validate treatment efficacy in the context of complex alleles.


Assuntos
Aminofenóis/uso terapêutico , Aminopiridinas/uso terapêutico , Benzodioxóis/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Quinolonas/uso terapêutico , Alelos , Combinação de Medicamentos , Humanos , Mutação , Fenilalanina/genética
7.
J Mol Biol ; 435(3): 167929, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566799

RESUMO

We have previously shown that the CBb subunit of crotoxin, a ß-neurotoxin with phospholipase A2 (PLA2) activity, targets the human ΔF508CFTR chloride channel implicated in cystic fibrosis (CF). By direct binding to the nucleotide binding domain 1 (NBD1) of ΔF508CFTR, this neurotoxic PLA2 acts as a potentiator increasing chloride channel current and corrects the trafficking defect of misfolded ΔF508CFTR inside the cell. Here, for a therapeutics development of new anti-cystic fibrosis agents, we use a structure-based in silico approach to design peptides mimicking the CBb-ΔF508NBD1 interface. Combining biophysical and electrophysiological methods, we identify several peptides that interact with the ΔF508NBD1 domain and reveal their effects as potentiators on phosphorylated ΔF508CFTR. Moreover, protein-peptide interactions and electrophysiological studies allowed us to identify key residues of ΔF508NBD1 governing the interactions with the novel potentiators. The designed peptides bind to the same region as CBb phospholipase A2 on ΔF508NBD1 and potentiate chloride channel activity. Certain peptides also show an additive effect towards the clinically approved VX-770 potentiator. The identified CF therapeutics peptides represent a novel class of CFTR potentiators and illustrate a strategy leading to reproducing the effect of specific protein-protein interactions.


Assuntos
Crotoxina , Regulador de Condutância Transmembrana em Fibrose Cística , Peptídeos , Humanos , Crotoxina/química , Crotoxina/farmacologia , Fibrose Cística , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mutação , Peptídeos/química , Fosfolipases/metabolismo , Fosfolipases A2/metabolismo
8.
J Cyst Fibros ; 20(3): 464-472, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33341408

RESUMO

BACKGROUND: Minigenes and in silico prediction tools are commonly used to assess the impact on splicing of CFTR variants. Exon skipping is often neglected though it could impact the efficacy of targeted therapies. The aim of the study was to identify exon skipping associated with CFTR variants and to evaluate in silico predictions of seven freely available software. METHODS: CFTR basal exon skipping was evaluated on endogenous mRNA extracted from non-CF nasal cells and on two CFTR minigene banks. In silico tools and minigene systems were used to evaluate the impact of CFTR exonic variants on exon skipping. RESULTS: Data showed that out of 65 CFTR variants tested, 26 enhanced exon skipping and that in silico prediction efficacy was of 50%-66%. Some in silico tools presented predictions with a bias towards the occurrence of splicing events while others presented a bias towards the absence of splicing events (non-detection including true negatives and false negatives). Classification of exons depending on their basal exon skipping level increased prediction rates up to 80%. CONCLUSION: This study indicates that taking basal exon skipping into account could orientate the choice of the in silico tools to improve prediction rates. It also highlights the need to validate effects using in vitro assays or mRNA studies in patients. Eventually, it shows that variant-guided therapy should also target exon skipping associated with variants.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Éxons , Processamento Alternativo , Células Cultivadas , Humanos , Mucosa Nasal/citologia , Sítios de Splice de RNA , Deleção de Sequência
9.
Eur J Med Chem ; 190: 112116, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32078860

RESUMO

Recent evidence shows that combination of correctors and potentiators, such as the drug ivacaftor (VX-770), can significantly restore the functional expression of mutated Cystic Fibrosis Transmembrane conductance Regulator (CFTR), an anion channel which is mutated in cystic fibrosis (CF). The success of these combinatorial therapies highlights the necessity of identifying a broad panel of specific binding mode modulators, occupying several distinct binding sites at structural level. Here, we identified two small molecules, SBC040 and SBC219, which are two efficient cAMP-independent potentiators, acting at low concentration of forskolin with EC50 close to 1 µM and in a synergic way with the drug VX-770 on several CFTR mutants of classes II and III. Molecular dynamics simulations suggested potential SBC binding sites at the vicinity of ATP-binding sites, distinct from those currently proposed for VX-770, outlining SBC molecules as members of a new family of potentiators.


Assuntos
Benzamidas/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Purinas/farmacologia , Aminofenóis/farmacologia , Benzamidas/síntese química , Benzamidas/metabolismo , Sítios de Ligação , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Sinergismo Farmacológico , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Purinas/síntese química , Purinas/metabolismo , Quinolonas/farmacologia
10.
J Cyst Fibros ; 18(3): 368-374, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30595473

RESUMO

BACKGROUND: Ivacaftor-lumacaftor combination therapy corrects the F508 del-CFTR mutated protein which causes Cystic Fibrosis. The clinical response of the patients treated with the combination therapy is highly variable. This study aimed to determine factors involved in the individual's response to lumacaftor-ivacaftor therapy. METHODS: Sweat test was assessed at baseline and after 6 months of ivacaftor-lumacaftor treatment in 41 homozygous F508del children and young adults. ß-adrenergic peak sweat secretion, nasal potential difference (NPD) and intestinal current measurements (ICM) were performed in patients accepting these tests. Seric level of lumacaftor and ivacaftor were determined and additional CFTR variant were searched. RESULTS: Sweat chloride concentration significantly decreased after treatment, whereas the ß-adrenergic peak sweat response did not vary in 9 patients who underwent these tests. The average level of F508del-CFTR activity rescue reached up to 15% of the normal level in intestinal epithelium, as studied by ICM in 12 patients (p = .03) and 20% of normal in the nasal epithelium in NPD tests performed in 21 patients (NS). There was no significant correlation between these changes and improvements in FEV1 at 6 months. Serum drug levels did not correlate with changes in FEV1, BMI-Zscore or other CFTR activity biomarkers. Additional exonic variants were identified in 4 patients. The F87L-I1027T-F508del-CFTR complex allele abolished the lumacaftor corrector effect. CONCLUSION: This observational study investigates a number of potential factors linked to the clinical response of F508del homozygous patients treated with lumacaftor-ivacaftor combination therapy. Lumacaftor and ivacaftor blood levels are not associated with the clinical response. Additional exonic variants may influence protein correction.


Assuntos
Aminofenóis , Aminopiridinas , Benzodioxóis , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística , Monitoramento de Medicamentos/métodos , Quinolonas , Suor , Aminofenóis/administração & dosagem , Aminofenóis/efeitos adversos , Aminofenóis/farmacocinética , Aminopiridinas/administração & dosagem , Aminopiridinas/efeitos adversos , Aminopiridinas/farmacocinética , Benzodioxóis/administração & dosagem , Benzodioxóis/efeitos adversos , Benzodioxóis/farmacocinética , Biomarcadores Farmacológicos , Criança , Agonistas dos Canais de Cloreto/administração & dosagem , Agonistas dos Canais de Cloreto/efeitos adversos , Agonistas dos Canais de Cloreto/farmacocinética , Fibrose Cística/diagnóstico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Combinação de Medicamentos , Feminino , Humanos , Masculino , Mutação , Testes Farmacogenômicos , Quinolonas/administração & dosagem , Quinolonas/efeitos adversos , Quinolonas/farmacocinética , Testes de Função Respiratória/métodos , Suor/química , Suor/metabolismo , Resultado do Tratamento , Adulto Jovem
12.
Sci Rep ; 9(1): 6516, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31019198

RESUMO

Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. Morbidity is mainly due to early airway infection. We hypothesized that S. aureus clearance during the first hours of infection was impaired in CF human Airway Surface Liquid (ASL) because of a lowered pH. The ASL pH of human bronchial epithelial cell lines and primary respiratory cells from healthy controls (WT) and patients with CF was measured with a pH microelectrode. The antimicrobial capacity of airway cells was studied after S. aureus apical infection by counting surviving bacteria. ASL was significantly more acidic in CF than in WT respiratory cells. This was consistent with a defect in bicarbonate secretion involving CFTR and SLC26A4 (pendrin) and a persistent proton secretion by ATP12A. ASL demonstrated a defect in S. aureus clearance which was improved by pH normalization. Pendrin inhibition in WT airways recapitulated the CF airway defect and increased S. aureus proliferation. ATP12A inhibition by ouabain decreased bacterial proliferation. Antimicrobial peptides LL-37 and hBD1 demonstrated a pH-dependent activity. Normalizing ASL pH might improve innate airway defense in newborns with CF during onset of S. aureus infection. Pendrin activation and ATP12A inhibition could represent novel therapeutic strategies to normalize pH in CF airways.


Assuntos
Brônquios/citologia , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bicarbonatos/química , Bicarbonatos/metabolismo , Linhagem Celular , Células Cultivadas , Criança , Pré-Escolar , Fibrose Cística/genética , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactente , Recém-Nascido , Mucosa Respiratória/química , Mucosa Respiratória/microbiologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Transportadores de Sulfato/metabolismo , Catelicidinas
13.
Front Pharmacol ; 9: 1464, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618756

RESUMO

The mutation F508del, responsible for a majority of cystic fibrosis cases, provokes the instability and misfolding of the CFTR chloride channel. Pharmacological recovery of F508del-CFTR may be obtained with small molecules called correctors. However, treatment with a single corrector in vivo and in vitro only leads to a partial rescue, a consequence of cell quality control systems that still detect F508del-CFTR as a defective protein causing its degradation. We tested the effect of spautin-1 on F508del-CFTR since it is an inhibitor of USP10 deubiquitinase and of autophagy, a target and a biological process that have been associated with cystic fibrosis and mutant CFTR. We found that short-term treatment of cells with spautin-1 downregulates the function and expression of F508del-CFTR despite the presence of corrector VX-809, a finding obtained in multiple cell models and assays. In contrast, spautin-1 was ineffective on wild type CFTR. Silencing and upregulation of USP13 (another target of spautin-1) but not of USP10, had opposite effects on F508del-CFTR expression/function. In contrast, modulation of autophagy with known activators or inhibitors did not affect F508del-CFTR. Our results identify spautin-1 as a novel chemical probe to investigate the molecular mechanisms that prevent full rescue of mutant CFTR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA