Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36501844

RESUMO

Cosmic ray neutron sensors (CRNS) are increasingly used to determine field-scale soil moisture (SM). Uncertainty of the CRNS-derived soil moisture strongly depends on the CRNS count rate subject to Poisson distribution. State-of-the-art CRNS signal processing averages neutron counts over many hours, thereby accounting for soil moisture temporal dynamics at the daily but not sub-daily time scale. This study demonstrates CRNS signal processing methods to improve the temporal accuracy of the signal in order to observe sub-daily changes in soil moisture and improve the signal-to-noise ratio overall. In particular, this study investigates the effectiveness of the Moving Average (MA), Median filter (MF), Savitzky-Golay (SG) filter, and Kalman filter (KF) to reduce neutron count error while ensuring that the temporal SM dynamics are as good as possible. The study uses synthetic data from four stations for measuring forest ecosystem-atmosphere relations in Africa (Gorigo) and Europe (SMEAR II (Station for Measuring Forest Ecosystem-Atmosphere Relations), Rollesbroich, and Conde) with different soil properties, land cover and climate. The results showed that smaller window sizes (12 h) for MA, MF and SG captured sharp changes closely. Longer window sizes were more beneficial in the case of moderate soil moisture variations during long time periods. For MA, MF and SG, optimal window sizes were identified and varied by count rate and climate, i.e., estimated temporal soil moisture dynamics by providing a compromise between monitoring sharp changes and reducing the effects of outliers. The optimal window for these filters and the Kalman filter always outperformed the standard procedure of simple 24-h averaging. The Kalman filter showed its highest robustness in uncertainty reduction at three different locations, and it maintained relevant sharp changes in the neutron counts without the need to identify the optimal window size. Importantly, standard corrections of CRNS before filtering improved soil moisture accuracy for all filters. We anticipate the improved signal-to-noise ratio to benefit CRNS applications such as detection of rain events at sub-daily resolution, provision of SM at the exact time of a satellite overpass, and irrigation applications.


Assuntos
Ecossistema , Solo , Água/análise , Chuva , Clima
2.
Sci Rep ; 14(1): 14227, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902311

RESUMO

Agricultural production assessments are crucial for formulating strategies for closing yield gaps and enhancing production efficiencies. While in situ crop yield measurements can provide valuable and accurate information, such approaches are costly and lack scalability for large-scale assessments. Therefore, crop modeling and remote sensing (RS) technologies are essential for assessing crop conditions and predicting yields at larger scales. In this study, we combined RS and a crop growth model to assess phenology, evapotranspiration (ET), and yield dynamics at grid and sub-county scales in Kenya. We synthesized RS information from the Food and Agriculture Organization (FAO) Water Productivity Open-access portal (WaPOR) to retrieve sowing date information for driving the model simulations. The findings showed that grid-scale management information and progressive crop growth could be accurately derived, reducing the model output uncertainties. Performance assessment of the modeled phenology yielded satisfactory accuracies at the sub-county scale during two representative seasons. The agreement between the simulated ET and yield was improved with the combined RS-crop model approach relative to the crop model only, demonstrating the value of additional large-scale RS information. The proposed approach supports crop yield estimation in data-scarce environments and provides valuable insights for agricultural resource management enabling countermeasures, especially when shortages are perceived in advance, thus enhancing agricultural production.


Assuntos
Produtos Agrícolas , Tecnologia de Sensoriamento Remoto , Zea mays , Quênia , Tecnologia de Sensoriamento Remoto/métodos , Zea mays/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Produção Agrícola/métodos , Agricultura/métodos , Modelos Teóricos , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA