Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Plant Cell ; 33(3): 642-670, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33955493

RESUMO

Pollen tube growth requires coordination of cytoskeletal dynamics and apical secretion. The regulatory phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is enriched in the subapical plasma membrane of pollen tubes of Arabidopsis thaliana and tobacco (Nicotiana tabacum) and can influence both actin dynamics and secretion. How alternative PtdIns(4,5)P2 effects are specified is unclear. In tobacco pollen tubes, spinning disc microscopy (SD) reveals dual distribution of a fluorescent PtdIns(4,5)P2-reporter in dynamic plasma membrane nanodomains vs. apparent diffuse membrane labeling, consistent with spatially distinct coexisting pools of PtdIns(4,5)P2. Several PI4P 5-kinases (PIP5Ks) can generate PtdIns(4,5)P2 in pollen tubes. Despite localizing to one membrane region, the PIP5Ks AtPIP5K2-EYFP and NtPIP5K6-EYFP display distinctive overexpression effects on cell morphologies, respectively related to altered actin dynamics or membrane trafficking. When analyzed by SD, AtPIP5K2-EYFP associated with nanodomains, whereas NtPIP5K6-EYFP localized diffusely. Chimeric AtPIP5K2-EYFP and NtPIP5K6-EYFP variants with reciprocally swapped membrane-associating domains evoked reciprocally shifted effects on cell morphology upon overexpression. Overall, active PI4P 5-kinase variants stabilized actin when targeted to nanodomains, suggesting a role of nanodomain-associated PtdIns(4,5)P2 in actin regulation. This notion is further supported by interaction and proximity of nanodomain-associated AtPIP5K2 with the Rho-GTPase NtRac5, and by its functional interplay with elements of Rho of plants signaling. Plasma membrane nano-organization may thus aid the specification of PtdIns(4,5)P2 functions to coordinate cytoskeletal dynamics and secretion.


Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , Nicotiana/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/genética , Regulação da Expressão Gênica de Plantas , Tubo Polínico/genética , Tubo Polínico/metabolismo , Nicotiana/genética , Proteínas rho de Ligação ao GTP/genética
2.
Biophys J ; 120(8): 1333-1342, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33609496

RESUMO

Membrane insertion of protein domains is an important step in many membrane remodeling processes, for example, in vesicular transport. The membrane area taken up by the protein insertion influences the protein binding affinity as well as the mechanical stress induced in the membrane and thereby its curvature. To our knowledge, this is the first optical measurement of this quantity on a system in equilibrium with direct determination of the number of inserted protein and no further assumptions concerning the binding thermodynamics. Whereas macroscopic total area changes in lipid monolayers are typically measured on a Langmuir film balance, finding the number of inserted proteins without perturbing the system and quantitating any small area changes has posed a challenge. Here, we address both issues by performing two-color fluorescence correlation spectroscopy directly on the monolayer. With a fraction of the protein being fluorescently labeled, the number of inserted proteins is determined in situ without resorting to invasive techniques such as collecting the monolayer by aspiration. The second color channel is exploited to monitor a small fraction of labeled lipids to determine the total area increase. Here, we use this method to determine the insertion area per molecule of Sar1, a protein of the COPII complex, which is involved in transport vesicle formation. Sar1 has an N-terminal amphipathic helix, which is responsible for membrane binding and curvature generation. An insertion area of (3.4 ± 0.8) nm2 was obtained for Sar1 in monolayers from a lipid mixture typically used in COPII reconstitution experiments, in good agreement with the expected insertion area of the Sar1 amphipathic helix. By using the two-color approach, determining insertion areas relies only on local fluorescence measurements. No macroscopic area measurements are needed, giving the method the potential to also be applied to laterally heterogeneous monolayers and bilayers.


Assuntos
Bicamadas Lipídicas , Lipídeos , Ligação Proteica , Espectrometria de Fluorescência , Termodinâmica
4.
Chemphyschem ; 19(24): 3436-3444, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30489002

RESUMO

Dual-color Fluorescence Cross-Correlation Spectroscopy (dcFCCS) allows binding analysis of biomolecules. Combining cross- and autocorrelation amplitudes yields binding degrees and concentrations of bound and unbound species. However, non-ideal detection volume overlap reduces the cross-correlation, causing overestimation of the Kd . The overlap quality factor that relates measured and true cross-correlation amplitudes has been difficult to determine, because neither a perfect 1 : 1 labeled sample nor perfectly overlapping volumes are readily accomplished. Here, we describe how a stochastically labeled sample can be used for quantitative calibration. Lipid vesicles doped with green and red fluorescent dyes yield highly reproducible relative cross-correlations and allow determination of the setup-dependent overlap quality factor. This reliable, affordable and quick-to-prepare calibration standard expedites any quantitative co-localization or binding analysis by dcFCCS.

5.
Biophys J ; 113(6): 1311-1320, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28697897

RESUMO

Fluorescence correlation spectroscopy has been previously used to investigate peptide and protein binding to lipid membranes, as it allows for very low amounts of sample, short measurement times and equilibrium binding conditions. Labeling only one of the binding partners, however, comes with certain drawbacks, as it relies on identifying binding events by a change in diffusion coefficient. Since peptide and protein aggregation can obscure specific binding, and since non-stoichiometric binding necessitates the explicit choice of a statistical distribution for the number of bound ligands, we additionally label the liposomes and perform dual-color fluorescence cross-correlation spectroscopy (dcFCCS). We develop a theoretical framework showing that dcFCCS amplitudes allow calculation of the degree of ligand binding and the concentration of unbound ligand, leading to a model-independent binding curve. As the degree of labeling of the ligands does not factor into the measured quantities, it is permissible to mix labeled and unlabeled ligand, thereby extending the range of usable protein concentrations and accessible dissociation constants, KD. The total protein concentration, but not the fraction of labeled protein, needs to be known. In this work, we apply our dcFCCS analysis scheme to Sar1p, a protein of the COPII complex, which binds "major-minor-mix" liposomes. A Langmuir isotherm model yields KD=(2.1±1.1)µM as the single-site dissociation constant. The dcFCCS framework presented here is highly versatile for biophysical analysis of binding interactions. It may be applied to many types of fluorescently labeled ligands and small diffusing particles, including nanodiscs and liposomes containing membrane protein receptors.


Assuntos
Lipossomos/química , Ligação Proteica , Espectrometria de Fluorescência/métodos , GTP Fosfo-Hidrolases/química , Microscopia Confocal , Microscopia de Fluorescência , Modelos Químicos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química
6.
Physiol Plant ; 160(3): 339-358, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28317130

RESUMO

The study investigated the effect of the thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulphoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure of two algal light-harvesting complexes (LHCs). In contrast to higher plants whose thylakoid membranes are characterized by an enrichment of the neutral galactolipids MGDG and DGDG, both the green alga Mantoniella squamata and the centric diatom Thalassiosira pseudonana contain membranes with a high content of the negatively charged lipids SQDG and PG. The algal thylakoids do not show the typical grana-stroma differentiation of higher plants but a regular arrangement. To analyze the effect of the membrane lipids, the fucoxanthin chlorophyll protein (FCP) complex of T. pseudonana and the LHC of M. squamata (MLHC) were prepared by successive cation precipitation using Triton X-100 as detergent. With this method, it is possible to isolate LHCs with a reduced amount of associated lipids in an aggregated state. The results from 77 K fluorescence and photon correlation spectroscopy show that neither the neutral galactolipids nor the negatively charged lipids are able to significantly alter the aggregation state of the FCP or the MLHC. This is in contrast to higher plants where SQDG and PG lead to a strong disaggregation of the LHCII whereas MGDG and DGDG induce the formation of large macroaggregates. The results indicate that LHCs which are integrated into thylakoid membranes with a high amount of negatively charged lipids and a regular arrangement are less sensitive to lipid-induced structural alterations than their counterparts in membranes enriched in neutral lipids with a grana-stroma differentiation.


Assuntos
Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Tilacoides/metabolismo , Clorofila/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Galactolipídeos/metabolismo , Complexos de Proteínas Captadores de Luz/química , Proteínas de Plantas/metabolismo
7.
Langmuir ; 32(3): 673-82, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26735449

RESUMO

A novel class of rigid-rod bolapolyphilic molecules with three philicities (rigid aromatic core, mobile aliphatic side chains, polar end groups) has recently been demonstrated to incorporate into and span lipid membranes, and to exhibit a rich variety of self-organization modes, including macroscopically ordered snowflake structures with 6-fold symmetry. In order to support a structural model and to better understand the self-organization on a molecular scale, we here report on proton and carbon-13 high-resolution magic-angle spinning solid-state NMR investigations of two different bolapolyphiles (BPs) in model membranes of two different phospholipids (DPPC, DOPC). We elucidate the changes in molecular dynamics associated with three new phase transitions detected by calorimetry in composite membranes of different composition, namely, a change in π-π-packing, the melting of lipid tails associated with the superstructure, and the dissolution and onset of free rotation of the BPs. We derive dynamic order parameters associated with different H-H and C-H bond directions of the BPs, demonstrating that the aromatic cores are well packed below the final phase transition, showing only 180° flips of the phenyl ring, and that they perform free rotations with additional oscillations of the long axis when dissolved in the fluid membrane. Our data suggests that BPs not only form ordered superstructures, but also rather homogeneously dispersed π-packed filaments within the lipid gel phase, thus reducing the corrugation of large vesicles.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Transição de Fase
8.
Chemistry ; 21(24): 8840-50, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25940233

RESUMO

A novel class of bolapolyphile (BP) molecules are shown to integrate into phospholipid bilayers and self-assemble into unique sixfold symmetric domains of snowflake-like dendritic shapes. The BPs comprise three philicities: a lipophilic, rigid, π-π stacking core; two flexible lipophilic side chains; and two hydrophilic, hydrogen-bonding head groups. Confocal microscopy, differential scanning calorimetry, XRD, and solid-state NMR spectroscopy confirm BP-rich domains with transmembrane-oriented BPs and three to four lipid molecules per BP. Both species remain well organized even above the main 1,2-dipalmitoyl-sn-glycero-3-phosphocholine transition. The BP molecules only dissolve in the fluid membrane above 70 °C. Structural variations of the BP demonstrate that head-group hydrogen bonding is a prerequisite for domain formation. Independent of the head group, the BPs reduce membrane corrugation. In conclusion, the BPs form nanofilaments by π stacking of aromatic cores, which reduce membrane corrugation and possibly fuse into a hexagonal network in the dendritic domains.

9.
Langmuir ; 31(9): 2839-50, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25695502

RESUMO

Polyphilic compound B12 is an X-shaped molecule with a stiff aromatic core, flexible aliphatic side chains, and hydrophilic end groups. Forming a thermotropic triangular honeycomb phase in the bulk between 177 and 182 °C but no lyotropic phases, it is designed to fit into DPPC or DMPC lipid bilayers, in which it phase separates at room temperature, as observed in giant unilamellar vesicles (GUVs) by fluorescence microscopy. TEM investigations of bilayer aggregates support the incorporation of B12 into intact membranes. The temperature-dependent behavior of the mixed samples was followed by differential scanning calorimetry (DSC), FT-IR spectroscopy, fluorescence spectroscopy, and X-ray scattering. DSC results support in-membrane phase separation, where a reduced main transition and new B12-related transitions indicate the incorporation of lipids into the B12-rich phase. The phase separation was confirmed by X-ray scattering, where two different lamellar repeat distances are visible over a wide temperature range. Polarized ATR-FTIR and fluorescence anisotropy experiments support the transmembrane orientation of B12, and FT-IR spectra further prove a stepwise "melting" of the lipid chains. The data suggest that in the B12-rich domains the DPPC chains are still rigid and the B12 molecules interact with each other via π-π interactions. All results obtained at temperatures above 75 °C confirm the formation of a single, homogeneously mixed phase with freely mobile B12 molecules.


Assuntos
Bicamadas Lipídicas/química , Conformação Molecular , Polímeros/química , Temperatura , 1,2-Dipalmitoilfosfatidilcolina/química , Membrana Celular/química , Dimiristoilfosfatidilcolina/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares
10.
Biol Chem ; 395(7-8): 801-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25003385

RESUMO

As shape transformations of membranes are vital for intracellular trafficking, it is crucial to understand both the mechanics and the biochemistry of these processes. The interplay of these two factors constitutes an experimental challenge, however, because biochemical experiments are not tailored to the investigation of mechanical processes, and biophysical studies using model membranes are not capable of emulating native biological complexity. Reconstituted liposome-based model systems have been widely used for investigating the formation of transport vesicles by the COPII complex that naturally occurs at the endoplasmic reticulum. Here we have revisited these model systems, to address the influence of lipid composition, GTP hydrolyzing conditions and mechanical perturbation on the experimental outcome. We observed that the lipid-dependence of COPII-induced membrane remodeling differs from that predicted based on the lipid-dependence of COPII membrane binding. Under GTP non-hydrolyzing conditions, a structured coat was seen while GTP-hydrolyzing conditions yielded uncoated membranes as well as membranes coated by a thick protein coat of rather unstructured appearance. Detailed up-to-date protocols for purifications of Saccharomyces cerevisiae COPII proteins and for reconstituted reactions using these proteins with giant liposomes are also provided.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/química , Modelos Moleculares
11.
Soft Matter ; 10(6): 831-9, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24837370

RESUMO

Bio-inspired recognition between macromolecules and antibodies can be used to reveal the location of amphiphilic block copolymers (BCPs) in model biomembranes and their subsequent scaffolding with nanoparticles (NPs). Potential applications of this novel class of lipid-BCP membranes require an understanding of their compositional heterogeneities with a variety of different molecules including natural proteins or synthetic NPs, whose selective incorporation into a specific part of phase separated membranes can serve as a model system for the targeted delivery of therapeutics. We demonstrate the selective incorporation of polymer-functionalized CdSe NPs into the polymer-rich domains in vesicular hybrid membranes using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, Tm = 41 °C) or 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, Tm = -20 °C) as the lipid component. Furthermore, we demonstrate a method to detect PIB-PEO based amphiphilic BCPs on liposomal surfaces by a PEO binding antibody (anti-PEO). As a result, hybrid membrane morphologies, which depend on the lipid/BCP composition, are selectively monitored and engineered.


Assuntos
Bicamadas Lipídicas/química , Lipossomos/química , Nanopartículas/química , Anticorpos/química , Lipídeos/química , Polímeros/química
12.
Soft Matter ; 10(33): 6147-60, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-24942348

RESUMO

A novel class of symmetric amphi- and triphilic (hydrophilic, lipophilic, fluorophilic) block copolymers has been investigated with respect to their interactions with lipid membranes. The amphiphilic triblock copolymer has the structure PGMA(20)-PPO(34)-PGMA(20) (GP) and it becomes triphilic after attaching perfluoroalkyl moieties (F9) to either end which leads to F(9)-PGMA(20)-PPO(34)-PGMA(20)-F(9) (F-GP). The hydrophobic poly(propylene oxide) (PPO) block is sufficiently long to span a lipid bilayer. The poly(glycerol monomethacrylate) (PGMA) blocks have a high propensity for hydrogen bonding. The hydrophobic and lipophobic perfluoroalkyl moieties have the tendency to phase segregate in aqueous as well as in hydrocarbon environments. We performed differential scanning calorimetry (DSC) measurements on polymer bound lipid vesicles under systematic variation of the bilayer thickness, the nature of the lipid headgroup, and the polymer concentration. The vesicles were composed of phosphatidylcholines (DMPC, DPPC, DAPC, DSPC) or phosphatidylethanolamines (DMPE, DPPE, POPE). We showed that GP as well as F-GP binding have membrane stabilizing and destabilizing components. PPO and F9 blocks insert into the hydrophobic part of the membrane concomitantly with PGMA block adsorption to the lipid headgroup layer. The F9 chains act as additional membrane anchors. The insertion of the PPO blocks of both GP and F-GP could be proven by 2D-NOESY NMR spectroscopy. By fluorescence microscopy we show that F-GP binding increases the porosity of POPC giant unilamellar vesicles (GUVs), allowing the influx of water soluble dyes as well as the translocation of the complete triphilic polymer and its accumulation at the GUV surface. These results open a new route for the rational design of membrane systems with specific properties.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/química , Polímeros/química , Ácidos Polimetacrílicos/química , Propilenoglicóis/química , Acrilatos/química , Adsorção , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Hidrocarbonetos/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Rodaminas/química , Temperatura , Termodinâmica
13.
bioRxiv ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39257813

RESUMO

Caveolin is a monotopic integral membrane protein, widely expressed in metazoa and responsible for constructing enigmatic membrane invaginations known as caveolae. Recently, the high-resolution structure of a purified human caveolin assembly, the CAV1-8S complex, revealed a unique organization of 11 protomers arranged in a tightly packed, radially symmetric spiral disc. One face and the outer rim of this disc are highly hydrophobic, suggesting that the complex incorporates into membranes by displacing hundreds of lipids from one leaflet. The feasibility of this unique molecular architecture and its biophysical and functional consequences are currently unknown. Using Langmuir film balance measurements, we find that CAV1-8S is highly surface active and intercalates into lipid monolayers. Molecular simulations of biomimetic bilayers support this 'leaflet replacement' model and reveal that while CAV1-8S effectively displaces phospholipids from one bilayer leaflet, it accumulates 40-70 cholesterol molecules into a disordered monolayer between the complex and its distal lipid leaflet. We find that CAV1-8S preferentially associates with positively curved membrane surfaces due to its influence on the conformations of distal leaflet lipids, and that these effects laterally sort lipids of the distal leaflet. Large-scale simulations of multiple caveolin assemblies confirmed their association with large, positively curved membrane morphologies, consistent with the shape of caveolae. Further, association with curved membranes regulates the exposure of caveolin residues implicated in protein-protein interactions. Altogether, the unique structure of CAV1-8S imparts unusual modes of membrane interaction with implications for membrane organization, morphology, and physiology.

14.
Macromol Biosci ; 23(5): e2200522, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36867099

RESUMO

The transformation of functional proteins into amyloidic plaques is responsible for the impairment of neurological functions in patients fallen victim to debilitating neurological conditions like Alzheimer's, Parkinson's, and Huntington's diseases. The nucleating role of amyloid beta (Aß1-40 ) peptide into amyloids is well established. Herein, lipid hybrid-vesicles are generated with glycerol/cholesterol-bearing polymers aiming to alter the nucleation process and modulate the early phases of Aß1-40 fibrillation. Hybrid-vesicles (±100 nm) are prepared by incorporating variable amounts of cholesterol-/glycerol-conjugated poly(di(ethylene glycol)m acrylates)n polymers into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membranes. The in vitro fibrillation kinetics coupled to transmission electron microscopy (TEM) is employed to investigate the role of hybrid-vesicles on Aß1-40 fibrillation without destroying the vesicular membrane. Both polymers, when embedded in hybrid-vesicles (up to 20%) significantly prolonged the fibrillation lag phase (tlag ) compared to a small acceleration in the presence of DOPC vesicles, irrespective of the amount of polymers inside the hybrid-vesicles. Along with this notable retardation effect, a morphological transformation of the amyloid's secondary structures to amorphous aggregates or the absence of fibrillar structures when interacting with the hybrid-vesicles is confirmed by TEM and circular dichroism (CD) spectroscopy.


Assuntos
Peptídeos beta-Amiloides , Polímeros , Humanos , Peptídeos beta-Amiloides/química , Polímeros/química , Glicerol , Amiloide/química , Amiloide/metabolismo , Lipídeos , Colesterol/química
15.
Nat Commun ; 14(1): 7570, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989735

RESUMO

ADP-ribosylation factor 1 (Arf1) interacts with multiple cellular partners and membranes to regulate intracellular traffic, organelle structure and actin dynamics. Defining the dynamic conformational landscape of Arf1 in its active form, when bound to the membrane, is of high functional relevance and key to understanding how Arf1 can alter diverse cellular processes. Through concerted application of nuclear magnetic resonance (NMR), neutron reflectometry (NR) and molecular dynamics (MD) simulations, we show that, while Arf1 is anchored to the membrane through its N-terminal myristoylated amphipathic helix, the G domain explores a large conformational space, existing in a dynamic equilibrium between membrane-associated and membrane-distal conformations. These configurational dynamics expose different interfaces for interaction with effectors. Interaction with the Pleckstrin homology domain of ASAP1, an Arf-GTPase activating protein (ArfGAP), restricts motions of the G domain to lock it in what seems to be a conformation exposing functionally relevant regions.


Assuntos
Fator 1 de Ribosilação do ADP , Fatores de Ribosilação do ADP , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Membranas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Actinas/metabolismo
16.
Chemphyschem ; 13(5): 1221-31, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22344749

RESUMO

Dual-color fluorescence cross-correlation spectroscopy (dcFCCS) allows one to quantitatively assess the interactions of mobile molecules labeled with distinct fluorophores. The technique is widely applied to both reconstituted and live-cell biological systems. A major drawback of dcFCCS is the risk of an artifactual false-positive or overestimated cross-correlation amplitude arising from spectral cross-talk. Cross-talk can be reduced or prevented by fast alternating excitation, but the technology is not easily implemented in standard commercial setups. An experimental strategy is devised that does not require specialized hardware and software for recognizing and correcting for cross-talk in standard dcFCCS. The dependence of the cross-talk on particle concentrations and brightnesses is quantitatively confirmed. Moreover, it is straightforward to quantitatively correct for cross-talk using quickly accessible parameters, that is, the measured (apparent) fluorescence count rates and correlation amplitudes. Only the bleed-through ratio needs to be determined in a calibration measurement. Finally, the limitations of cross-talk correction and its influence on experimental error are explored.


Assuntos
Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Artefatos , Calibragem , Cor , Fluorescência , Corantes Fluorescentes/análise , Modelos Químicos , Ligação Proteica
17.
Sci Rep ; 10(1): 3100, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080222

RESUMO

Artificial giant vesicles have proven highly useful as membrane models in a large variety of biophysical and biochemical studies. They feature accessibility for manipulation and detection, but lack the compositional complexity needed to reconstitute complicated cellular processes. For the plasma membrane (PM), this gap was bridged by the establishment of giant PM vesicles (GPMVs). These native membranes have facilitated studies of protein and lipid diffusion, protein interactions, electrophysiology, fluorescence analysis of lateral domain formation and protein and lipid partitioning as well as mechanical membrane properties and remodeling. The endoplasmic reticulum (ER) is key to a plethora of biological processes in any eukaryotic cell. However, its intracellular location and dynamic and intricate tubular morphology makes it experimentally even less accessible than the PM. A model membrane, which will allow the afore-mentioned types of studies on GPMVs to be performed on ER membranes outside the cell, is therefore genuinely needed. Here, we introduce the formation of giant ER vesicles, termed GERVs, as a new tool for biochemistry and biophysics. To obtain GERVs, we have isolated ER membranes from Saccharomyces cerevisiae and fused them by exploiting the atlastin-like fusion protein Sey1p. We demonstrate the production of GERVs and their utility for further studies.


Assuntos
Membrana Celular/metabolismo , Técnicas Citológicas , Retículo Endoplasmático/metabolismo , Microssomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Apirase/metabolismo , Difusão , Metabolismo dos Lipídeos , Microscopia Confocal , Reprodutibilidade dos Testes , Canais de Translocação SEC/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Biophys J ; 95(2): 691-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18390598

RESUMO

Equinatoxin II is a pore-forming protein of the actinoporin family. After membrane binding, it inserts its N-terminal alpha-helix and forms a protein/lipid pore. Equinatoxin II activity depends on the presence of sphingomyelin in the target membrane; however, the role of this specificity is unknown. On the other hand, sphingomyelin is considered an essential ingredient of lipid rafts and promotes liquid-ordered/liquid-disordered phase separation in model membranes that mimic raft composition. Here, we used giant unilamellar vesicles to simultaneously investigate the effect of sphingomyelin and phase separation on the membrane binding and permeabilizing activity of Equinatoxin II. Our results show that Equinatoxin II binds preferentially to the liquid-ordered phase over the liquid-disordered one and that it tends to concentrate at domain interfaces. In addition, sphingomyelin strongly enhances membrane binding of the toxin but is not sufficient for membrane permeabilization. Under the same experimental conditions, Equinatoxin II formed pores in giant unilamellar vesicles containing sphingomyelin only when liquid-ordered and -disordered phases coexisted. Our observations demonstrate the importance of phase boundaries for Equinatoxin II activity and suggest a double role of sphingomyelin as a specific receptor for the toxin and as a promoter of the membrane organization necessary for Equinatoxin II action.


Assuntos
Venenos de Cnidários/química , Bicamadas Lipídicas/química , Esfingomielinas/química , Permeabilidade , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA