Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 87(11): 11D811, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910554

RESUMO

The study of plasma-wall interactions and impurity transport in the plasma fusion devices is critical for the development of future fusion reactors. An experiment to perform laser induced breakdown spectroscopy, using minor modifications of our existing laser blow-off impurity injection system, has been set up thus making both experiments compatible. The radiation produced by the laser pulse focused at the TJ-II wall evaporates a surface layer of deposited impurities and the subsequent radiation produced by the laser-produced plasma is collected by two separate lens and fiber combinations into two spectrometers. The first spectrometer, with low spectral resolution, records a spectrum from 200 to 900 nm to give a survey of impurities present in the wall. The second one, with high resolution, is tuned to the wavelengths of the Hα and Dα lines in order to resolve them and quantify the hydrogen isotopic ratio present on the surface of the wall. The alignment, calibration, and spectral analysis method will be described in detail. First experimental results obtained with this setup will be shown and its relevance for the TJ-II experimental program discussed.

2.
Rev Sci Instrum ; 87(11): 11D809, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910539

RESUMO

A systematic study of scintillation materials was undertaken to improve the time resolution of the fast ion diagnostic currently installed at TJ-II stellarator. It was found that YAP:Ce (formula YAlO3:Ce, Yttrium Aluminum Perovskite doped with Cerium) ionoluminescence offers better sensitivity and time response compared to the standard detector material, SrGa2S4:Eu (TG-Green), currently used in TJ-II. A comparison between both materials was carried out by irradiating them with H+ ions of up to 40 keV using a dedicated laboratory setup. It is found that for the low energy ions of interest at TJ-II, YAP:Ce offers 20 times higher sensitivity than TG-Green and much faster decay time, 27 ns versus 540 ns. It is expected that the use of YAP:Ce in combination with a faster data acquisition and an ion counting software as part of the TJ-II ion luminescent probe will provide 20 times faster data on ion loss.

3.
Rev Sci Instrum ; 85(11): 11E405, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430312

RESUMO

The isotope effect is an important topic that is relevant for future D-T fusion reactors, where the use of deuterium, rather than hydrogen, may lean to improved plasma confinement. An evaluation of the ratio of hydrogen/deuterium is needed for isotope effect studies in current isotopic experiments. Here, the spectral range around Hα and Dα lines, obtained with an intensified multi-channel detector mounted to a 1-m focal length spectrometer, is analyzed using a fit function that includes several Gaussian components. The isotopic ratio evolution for a single operational day of the TJ-II stellarator is presented. The role of injected hydrogen by Neutral Beam Injection heating is also studied.

4.
Rev Sci Instrum ; 83(10): 10D306, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126833

RESUMO

We investigate the capability of a fast-ion luminescent probe to operate as a pulse height ion energy analyzer. An existing high sensitivity system has been reconfigured as a single channel ion detector with an amplifier to give a bandwidth comparable to the phosphor response time. A digital pulse processing method has been developed to determine pulse heights from the detector signal so as to obtain time-resolved information on the ion energy distribution of the plasma ions lost to the wall of the TJ-II stellarator. Finally, the potential of this approach for magnetic confined fusion plasmas is evaluated by studying representative TJ-II discharges.

5.
Rev Sci Instrum ; 81(10): 10D317, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033843

RESUMO

ZnO:Ga is a promising, high time resolution candidate for use as a fast-ion-loss detector in TJ-II. We compare its ionoluminescence with that of the standard fast-ion-loss detector material, SrGa(2)S(4):Eu (also known as TG-Green), when irradiated by H(+) ions with a range of energies E≤60 keV using a dedicated laboratory setup. It is found that ZnO:Ga is a reasonably good candidate for detecting low energy (E<60 keV) ions as it has excellent time resolution; however, its sensitivity is about 100 times lower than TG-Green, potentially limiting it to applications with high energy ion loss signals.

6.
Rev Sci Instrum ; 79(10): 10E516, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044498

RESUMO

This work extends a previous study on ionoluminescence of a radiation-hard ceramic scintillator, Al(2)O(3):Cr, to ions accelerated to keV energies [K. J. McCarthy et al., J. Nucl. Mater. 321, 78 (2003)]. It is motivated by the identification of this material as a promising candidate for use in the fast-ion-loss detector for ITER [for the range of thermal (low energy) and suprathermal ions]. In the paper we quantify and compare its ionoluminescence with that of some common luminescent materials (YAG:Ce and ruby) when irradiated by H(+) ions accelerated to < or = 60 keV using a purpose built laboratory setup. Next, studies are made on the ceramic to quantify its response as a function of incident ion mass, i.e., to He(+). For this, the absolute luminosities of the material are estimated in terms of the number of photons emitted per incident ion as a function of energy. Moreover, the radiation hardness and postirradiation recovery of the ceramic are investigated. Finally, from the studies it can be concluded that the ceramic ruby is a good candidate for detecting low energy ions as long as its temporal response (approximately several milliseconds) is not a constraint for specific ion measurements.

7.
Rev Sci Instrum ; 79(10): 10F540, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044682

RESUMO

The chord-integrated emissions of spectral lines have been monitored in the TJ-II stellarator by using a spectral system with time and space scanning capabilities and relative calibration over the entire UV-visible spectral range. This system has been used to study the line ratio of lines of different ionization stages of carbon (C(5+) 5290 A and C(4+) 2271 A) for plasma diagnostic purposes. The local emissivity of these ions has been reconstructed, for quasistationary profiles, by means of the inversion Fisher method described previously. The experimental line ratio is being empirically studied and in parallel a simple spectroscopic model has been developed to account for that ratio. We are investigating whether the role played by charge exchange processes with neutrals and the existence of non-Maxwellian electrons, intrinsic to Electron Cyclotron Resonance Heating (ECRH) heating, leave any distinguishable mark on this diagnostic method.

8.
Rev Sci Instrum ; 79(9): 093511, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19044417

RESUMO

A mobile luminescent probe has been developed to detect fast ion losses and suprathermal ions escaping from the plasma of the TJ-II stellarator device. The priorities for its design have been flexibility for probe positioning, ease of maintenance, and detector sensitivity. It employs a coherent fiber bundle to relay, to the outside of the vacuum chamber, ionoluminescence images produced by the ions that impinge, after entering the detector head through a pinhole aperture, onto a screen of luminescent material. Ionoluminescence light detection is accomplished by a charge-coupled device camera and by a photomultiplier, both of which are optically coupled to the in-vacuum fiber bundle head by means of a standard optical setup. A detailed description of the detector, and the first results obtained when operated close to the plasma edge, are reported.

9.
J Synchrotron Radiat ; 7(Pt 4): 215-20, 2000 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16609198

RESUMO

Phosphor screens find application in many fields because of their ability to convert incident radiation to wavelengths that are readily measured by modern detectors. While the response of such screens in the X-ray region has been widely studied, much work still remains to be done regarding their response in the vacuum ultraviolet and soft X-ray regions, where the response is predicted to be non-linear owing to the presence of elemental absorption edges. Here, an experiment using synchrotron radiation to determine the response of thin Y(3)Al(5)O(12):Ce (1-21 mg cm(-2)) and Y(2)O(3):Eu (2.64 mg cm(-2)) powder phosphor screens in the spectral range 20-900 A (13.8-620 eV) is reported. Also, a custom-built camera is described which permits simultaneous collection of the forward- and backward-emitted light and that enables measurements to be made at various positions across the screens and at several screen/incident beam angles. Finally, features in the response spectra are identified, and efficiencies across the spectral range indicated for different screen thicknesses and operating modes are plotted, before a curve of the intrinsic radiant efficiency of Y(3)Al(5)O(12):Ce is produced. The results are discussed in the context of other measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA