Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
MMWR Morb Mortal Wkly Rep ; 70(35): 1191-1194, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34473685

RESUMO

Harmful algal and cyanobacterial blooms (harmful algal blooms) are large colonies of algae or cyanobacteria that can harm humans, animals, and the environment (1-3). The number of algal blooms has been increasing in the United States, augmented by increasing water temperatures and nutrients in water from industry and agricultural run-off (4,5). The extent to which harmful algal bloom exposures cause human illness or long-term health effects is unknown. As the number of blooms increases annually, the likelihood of negative health outcomes (e.g., respiratory or gastrointestinal illness) from exposure also increases (4,5). To explore the utility of syndromic surveillance data for studying health effects from harmful algal bloom exposures, CDC queried emergency department (ED) visit data from the National Syndromic Surveillance Program (NSSP) for harmful algal bloom exposure-associated administrative discharge diagnosis codes and chief complaint text terms related to harmful algal bloom exposure (6). A total of 321 harmful algal bloom-associated ED visits were identified during January 1, 2017-December 31, 2019. An increase in harmful algal bloom-associated ED visits occurred during warmer months (June-October), consistent with seasonal fluctuations of blooms and recent publications (6,7). Although syndromic surveillance data are helpful for understanding harmful algal bloom-associated ED visits in the United States, exposures were documented infrequently with discharge diagnosis codes; 67% of harmful algal bloom-associated ED visits were identified through querying chief complaint text. Improving the documentation of harmful algal bloom exposures in medical records would further benefit future health studies.


Assuntos
Doenças Transmissíveis/epidemiologia , Serviço Hospitalar de Emergência/estatística & dados numéricos , Exposição Ambiental/efeitos adversos , Proliferação Nociva de Algas , Vigilância de Evento Sentinela , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Doenças Transmissíveis/terapia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Estações do Ano , Estados Unidos/epidemiologia , Adulto Jovem
2.
Environ Sci Technol ; 55(8): 5012-5023, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33729798

RESUMO

Arsenic from geologic sources is widespread in groundwater within the United States (U.S.). In several areas, groundwater arsenic concentrations exceed the U.S. Environmental Protection Agency maximum contaminant level of 10 µg per liter (µg/L). However, this standard applies only to public-supply drinking water and not to private-supply, which is not federally regulated and is rarely monitored. As a result, arsenic exposure from private wells is a potentially substantial, but largely hidden, public health concern. Machine learning models using boosted regression trees (BRT) and random forest classification (RFC) techniques were developed to estimate probabilities and concentration ranges of arsenic in private wells throughout the conterminous U.S. Three BRT models were fit separately to estimate the probability of private well arsenic concentrations exceeding 1, 5, or 10 µg/L whereas the RFC model estimates the most probable category (≤5, >5 to ≤10, or >10 µg/L). Overall, the models perform best at identifying areas with low concentrations of arsenic in private wells. The BRT 10 µg/L model estimates for testing data have an overall accuracy of 91.2%, sensitivity of 33.9%, and specificity of 98.2%. Influential variables identified across all models included average annual precipitation and soil geochemistry. Models were developed in collaboration with public health experts to support U.S.-based studies focused on health effects from arsenic exposure.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Monitoramento Ambiental , Humanos , Aprendizado de Máquina , Estados Unidos , Poluentes Químicos da Água/análise , Abastecimento de Água , Poços de Água
3.
J Environ Health ; 839: 8-14, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-36060209

RESUMO

Harmful algal blooms (HABs) are the rapid growth of algae that can produce toxic or harmful effects in people and animals. Potential health effects include respiratory illness, gastrointestinal illness, skin and eye irritation, and sometimes more severe toxic effects such as liver damage. Defining HAB exposure and related illness is challenging for many reasons, including characterizing the exposure. Large electronic health record databases present an opportunity to study health encounters specifically related to HAB exposure through querying medical diagnostic codes. We queried the MarketScan Research Databases between January 2009 and April 2019 for use of the International Classification of Diseases (ICD) codes for HAB exposure. We found a total of 558 records that used either the ICD-9 or ICD-10 code for HAB exposure. Respiratory illness was most commonly reported along with the HAB exposure code. Use of HAB exposure codes showed seasonal fluctuations during 2012-2019. We found that although the HAB-related ICD-9 and ICD-10 codes were used infrequently, they were most often recorded during bloom seasons in warmer months. This analysis is the first that utilizes a large-scale national database of de-identified health records to understand the use of medical diagnostic codes related to algae exposure.

4.
MMWR Morb Mortal Wkly Rep ; 69(50): 1889-1894, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33332289

RESUMO

Harmful algal bloom events can result from the rapid growth, or bloom, of photosynthesizing organisms in natural bodies of fresh, brackish, and salt water. These events can be exacerbated by nutrient pollution (e.g., phosphorus) and warming waters and other climate change effects (1); have a negative impact on the health of humans, animals, and the environment; and damage local economies (2,3). U.S. harmful algal bloom events of public health concern are centered on a subset of phytoplankton: diatoms, dinoflagellates, and cyanobacteria (also called blue-green algae). CDC launched the One Health Harmful Algal Bloom System (OHHABS) in 2016 to inform efforts to prevent human and animal illnesses associated with harmful algal bloom events. A total of 18 states reported 421 harmful algal bloom events, 389 cases of human illness, and 413 cases of animal illness that occurred during 2016-2018. The majority of harmful algal bloom events occurred during May-October (413; 98%) and in freshwater bodies (377; 90%). Human and animal illnesses primarily occurred during June-September (378; 98%) and May-September (410; 100%). Gastrointestinal or generalized illness signs or symptoms were the most frequently reported (>40% of human cases and >50% of animal cases); however, multiple other signs and symptoms were reported. Surveillance data from harmful algal bloom events, exposures, and health effects provide a systematic description of these occurrences and can be used to inform control and prevention of harmful algal bloom-associated illnesses.


Assuntos
Doenças Transmissíveis/epidemiologia , Exposição Ambiental/efeitos adversos , Proliferação Nociva de Algas , Saúde Única , Vigilância em Saúde Pública/métodos , Adolescente , Adulto , Idoso , Doenças dos Animais/epidemiologia , Animais , Criança , Pré-Escolar , Doenças Transmissíveis/veterinária , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Adulto Jovem
5.
J Water Health ; 17(5): 801-812, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31638030

RESUMO

Well water around the world can be contaminated with arsenic, a naturally occurring geological element that has been associated with myriad adverse health effects. Persons obtaining their drinking water from private wells are often responsible for well testing and water treatment. High levels of arsenic have been reported in well water-supplied areas of the United States. We quantified - in cases and dollars - the potential burden of disease associated with the ingestion of arsenic through private well drinking water supplies in the United States. To estimate cancer and cardiovascular disease burden, we developed a Monte Carlo model integrating three input streams: (1) regional concentrations of arsenic in drinking water wells across the United States; (2) dose-response relationships in the form of cancer slope factors and hazard ratios; and (3) economic cost estimates developed for morbidity endpoints using 'cost-of-illness' methods and for mortality using 'value per statistical life' estimates. Exposure to arsenic in drinking water from U.S. domestic wells is modeled to contribute 500 annual premature deaths from ischemic heart disease and 1,000 annual cancer cases (half of them fatal), monetized at $10.9 billion (2017 USD) annually. These considerable public health burden estimates can be compared with the burdens of other priority public health issues to assist in decision-making.


Assuntos
Arsênio/análise , Efeitos Psicossociais da Doença , Água Potável/química , Poluentes Químicos da Água/análise , Purificação da Água , Poços de Água , Estados Unidos , Abastecimento de Água
6.
MMWR Morb Mortal Wkly Rep ; 67(25): 701-706, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29953425

RESUMO

Outbreaks associated with untreated recreational water can be caused by pathogens, toxins, or chemicals in fresh water (e.g., lakes, rivers) or marine water (e.g., ocean). During 2000-2014, public health officials from 35 states and Guam voluntarily reported 140 untreated recreational water-associated outbreaks to CDC. These outbreaks resulted in at least 4,958 cases of disease and two deaths. Among the 95 outbreaks with a confirmed infectious etiology, enteric pathogens caused 80 (84%); 21 (22%) were caused by norovirus, 19 (20%) by Escherichia coli, 14 (15%) by Shigella, and 12 (13%) by Cryptosporidium. Investigations of these 95 outbreaks identified 3,125 cases; 2,704 (87%) were caused by enteric pathogens, including 1,459 (47%) by norovirus, 362 (12%) by Shigella, 314 (10%) by Cryptosporidium, and 155 (5%) by E. coli. Avian schistosomes were identified as the cause in 345 (11%) of the 3,125 cases. The two deaths were in persons affected by a single outbreak (two cases) caused by Naegleria fowleri. Public parks (50 [36%]) and beaches (45 [32%]) were the leading settings associated with the 140 outbreaks. Overall, the majority of outbreaks started during June-August (113 [81%]); 65 (58%) started in July. Swimmers and parents of young swimmers can take steps to minimize the risk for exposure to pathogens, toxins, and chemicals in untreated recreational water by heeding posted advisories closing the beach to swimming; not swimming in discolored, smelly, foamy, or scummy water; not swimming while sick with diarrhea; and limiting water entering the nose when swimming in warm freshwater.


Assuntos
Doenças Transmissíveis/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Água Doce , Recreação , Praias/estatística & dados numéricos , Água Doce/microbiologia , Água Doce/parasitologia , Água Doce/virologia , Humanos , Lagos/microbiologia , Lagos/parasitologia , Lagos/virologia , Parques Recreativos/estatística & dados numéricos , Lagoas/microbiologia , Lagoas/parasitologia , Lagoas/virologia , Rios/microbiologia , Rios/parasitologia , Rios/virologia , Fatores de Tempo , Estados Unidos/epidemiologia , Purificação da Água
7.
Environ Sci Technol ; 51(21): 12443-12454, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29043784

RESUMO

Arsenic concentrations from 20 450 domestic wells in the U.S. were used to develop a logistic regression model of the probability of having arsenic >10 µg/L ("high arsenic"), which is presented at the county, state, and national scales. Variables representing geologic sources, geochemical, hydrologic, and physical features were among the significant predictors of high arsenic. For U.S. Census blocks, the mean probability of arsenic >10 µg/L was multiplied by the population using domestic wells to estimate the potential high-arsenic domestic-well population. Approximately 44.1 M people in the U.S. use water from domestic wells. The population in the conterminous U.S. using water from domestic wells with predicted arsenic concentration >10 µg/L is 2.1 M people (95% CI is 1.5 to 2.9 M). Although areas of the U.S. were underrepresented with arsenic data, predictive variables available in national data sets were used to estimate high arsenic in unsampled areas. Additionally, by predicting to all of the conterminous U.S., we identify areas of high and low potential exposure in areas of limited arsenic data. These areas may be viewed as potential areas to investigate further or to compare to more detailed local information. Linking predictive modeling to private well use information nationally, despite the uncertainty, is beneficial for broad screening of the population at risk from elevated arsenic in drinking water from private wells.


Assuntos
Arsênio , Poluentes Químicos da Água , Poços de Água , Modelos Logísticos , Estados Unidos , Abastecimento de Água
8.
Mar Drugs ; 15(3)2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28335428

RESUMO

Ciguatera Fish Poisoning (CFP) is the most frequently reported seafood-toxin illness in the world. It causes substantial human health, social, and economic impacts. The illness produces a complex array of gastrointestinal, neurological and neuropsychological, and cardiovascular symptoms, which may last days, weeks, or months. This paper is a general review of CFP including the human health effects of exposure to ciguatoxins (CTXs), diagnosis, human pathophysiology of CFP, treatment, detection of CTXs in fish, epidemiology of the illness, global dimensions, prevention, future directions, and recommendations for clinicians and patients. It updates and expands upon the previous review of CFP published by Friedman et al. (2008) and addresses new insights and relevant emerging global themes such as climate and environmental change, international market issues, and socioeconomic impacts of CFP. It also provides a proposed universal case definition for CFP designed to account for the variability in symptom presentation across different geographic regions. Information that is important but unchanged since the previous review has been reiterated. This article is intended for a broad audience, including resource and fishery managers, commercial and recreational fishers, public health officials, medical professionals, and other interested parties.


Assuntos
Ciguatera/epidemiologia , Ciguatoxinas/toxicidade , Peixes/metabolismo , Alimentos Marinhos/intoxicação , Animais , Surtos de Doenças , Humanos , Saúde Pública
9.
Artigo em Inglês | MEDLINE | ID: mdl-26309063

RESUMO

Exposure to chlorination disinfection by-products (CxDBPs) is prevalent in populations using chlorination-based methods to disinfect public water supplies. Multifaceted research has been directed for decades to identify, characterize, and understand the toxicology of these compounds, control and minimize their formation, and conduct epidemiologic studies related to exposure. Urinary bladder cancer has been the health risk most consistently associated with CxDBPs in epidemiologic studies. An international workshop was held to (1) discuss the qualitative strengths and limitations that inform the association between bladder cancer and CxDBPs in the context of possible causation, (2) identify knowledge gaps for this topic in relation to chlorine/chloramine-based disinfection practice(s) in the United States, and (3) assess the evidence for informing risk management. Epidemiological evidence linking exposures to CxDBPs in drinking water to human bladder cancer risk provides insight into causality. However, because of imprecise, inaccurate, or incomplete estimation of CxDBPs levels in epidemiologic studies, translation from hazard identification directly to risk management and regulatory policy for CxDBPs can be challenging. Quantitative risk estimates derived from toxicological risk assessment for CxDBPs currently cannot be reconciled with those from epidemiologic studies, notwithstanding the complexities involved, making regulatory interpretation difficult. Evidence presented here has both strengths and limitations that require additional studies to resolve and improve the understanding of exposure response relationships. Replication of epidemiologic findings in independent populations with further elaboration of exposure assessment is needed to strengthen the knowledge base needed to better inform effective regulatory approaches.


Assuntos
Desinfetantes/toxicidade , Desinfecção , Exposição Ambiental , Halogenação , Neoplasias da Bexiga Urinária/epidemiologia , Poluentes Químicos da Água/toxicidade , Cloraminas/toxicidade , Cloro/toxicidade , Água Potável/análise , Humanos , Medição de Risco , Estados Unidos , Neoplasias da Bexiga Urinária/induzido quimicamente , Purificação da Água
10.
Harmful Algae ; 49: 63-74, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26435706

RESUMO

Toxic cyanobacteria became more widely recognized as a potential health hazard in the 1990s, and in 1998 the World Health Organization (WHO) first published a provisional Guideline Value of 1 µg L-1 for microcystin-LR in drinking-water. In this publication we compare risk assessment and risk management of toxic cyanobacteria in 17 countries across all five continents. We focus on the three main (oral) exposure vehicles to cyanotoxins: drinking-water, water related recreational and freshwater seafood. Most countries have implemented the provisional WHO Guideline Value, some as legally binding standard, to ensure the distribution of safe drinking-water with respect to microcystins. Regulation, however, also needs to address the possible presence of a wide range of other cyanotoxins and bioactive compounds, for which no guideline values can be derived due to insufficient toxicological data. The presence of microcystins (commonly expressed as microcystin-LR equivalents) may be used as proxy for overall guidance on risk management, but this simplification may miss certain risks, for instance from dissolved fractions of cylindrospermopsin and cyanobacterial neurotoxins. An alternative approach, often taken for risk assessment and management in recreational waters, is to regulate cyanobacterial presence - as cell numbers or biomass - rather than individual toxins. Here, many countries have implemented a two or three tier alert level system with incremental severity. These systems define the levels where responses are switched from Surveillance to Alert and finally to Action Mode and they specify the short-term actions that follow. Surface bloom formation is commonly judged to be a significant risk because of the elevated concentration of microcystins in a scum. Countries have based their derivations of legally binding standards, guideline values, maximally allowed concentrations (or limits named otherwise) on very similar scientific methodology, but underlying assumptions such as bloom duration, average body size and the amount of water consumed while swimming vary according to local circumstances. Furthermore, for toxins with incomplete toxicological data elements of expert judgment become more relevant and this also leads to a larger degree of variation between countries' thresholds triggering certain actions. Cyanobacterial blooms and their cyanotoxin content are a highly variable phenomenon, largely depending on local conditions, and likely concentrations can be assessed and managed best if the specific conditions of the locality are known and their impact on bloom occurrence are understood. Risk Management Frameworks, such as for example the Water Safety Plan concept of the WHO and the 'bathing water profile' of the European Union are suggested to be effective approaches for preventing human exposure by managing toxic cyanobacteria from catchment to consumer for drinking water and at recreational sites.

11.
MMWR Morb Mortal Wkly Rep ; 63(1): 6-10, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24402466

RESUMO

Recreational water-associated disease outbreaks result from exposure to infectious pathogens or chemical agents in treated recreational water venues (e.g., pools and hot tubs or spas) or untreated recreational water venues (e.g., lakes and oceans). For 2009-2010, the most recent years for which finalized data are available, public health officials from 28 states and Puerto Rico electronically reported 81 recreational water-associated disease outbreaks to CDC's Waterborne Disease and Outbreak Surveillance System (WBDOSS) via the National Outbreak Reporting System (NORS). This report summarizes the characteristics of those outbreaks. Among the 57 outbreaks associated with treated recreational water, 24 (42%) were caused by Cryptosporidium. Among the 24 outbreaks associated with untreated recreational water, 11 (46%) were confirmed or suspected to have been caused by cyanobacterial toxins. In total, the 81 outbreaks resulted in at least 1,326 cases of illness and 62 hospitalizations; no deaths were reported. Laboratory and environmental data, in addition to epidemiologic data, can be used to direct and optimize the prevention and control of recreational water-associated disease outbreaks.


Assuntos
Doenças Transmissíveis/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Vigilância da População , Recreação , Banhos/efeitos adversos , Doenças Transmissíveis/etiologia , Estâncias para Tratamento de Saúde , Humanos , Lagos/química , Lagos/microbiologia , Lagos/parasitologia , Água do Mar/química , Água do Mar/microbiologia , Água do Mar/parasitologia , Piscinas , Fatores de Tempo , Estados Unidos/epidemiologia , Microbiologia da Água , Poluição da Água , Purificação da Água/estatística & dados numéricos
12.
MMWR Morb Mortal Wkly Rep ; 63(1): 11-5, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24402467

RESUMO

Harmful algal blooms (HABs) are excessive accumulations of microscopic photosynthesizing aquatic organisms (phytoplankton) that produce biotoxins or otherwise adversely affect humans, animals, and ecosystems. HABs occur sporadically and often produce a visible algal scum on the water. This report summarizes human health data and water sampling results voluntarily reported to CDC's Waterborne Disease and Outbreak Surveillance System (WBDOSS) via the National Outbreak Reporting System (NORS) and the Harmful Algal Bloom-Related Illness Surveillance System (HABISS)* for the years 2009-2010. For 2009-2010, 11 waterborne disease outbreaks associated with algal blooms were reported; these HABs all occurred in freshwater lakes. The outbreaks occurred in three states and affected at least 61 persons. Health effects included dermatologic, gastrointestinal, respiratory, and neurologic signs and symptoms. These 11 HAB-associated outbreaks represented 46% of the 24 outbreaks associated with untreated recreational water reported for 2009-2010, and 79% of the 14 freshwater HAB-associated outbreaks that have been reported to CDC since 1978. Clinicians should be aware of the potential for HAB-associated illness among patients with a history of exposure to freshwater.


Assuntos
Doenças Transmissíveis/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Proliferação Nociva de Algas , Lagos/microbiologia , Vigilância da População , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Adulto Jovem
13.
Foodborne Pathog Dis ; 10(12): 1059-66, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24093307

RESUMO

BACKGROUND: Ciguatera and scombroid fish poisonings are common causes of fish-related foodborne illness in the United States; however, existing surveillance systems underestimate the overall human health impact. OBJECTIVES: This study aimed to describe existing data on ciguatera and scombroid fish poisonings from outbreak and poison control center reports and to estimate the overall number of ciguatera and scombroid fish-poisoning illnesses, hospitalizations, and deaths in the United States. METHODS: We analyzed outbreak data from the Foodborne Disease Outbreak Surveillance Systems (FDOSS) from 2000 to 2007 and poison control center call data from the National Poison Data System (NPDS) from 2005 to 2009 for reports of ciguatera and scombroid fish poisonings. Using a statistical model with many inputs, we adjusted the outbreak data for undercounting due to underreporting and underdiagnosis to generate estimates. Underreporting and underdiagnosis multipliers were derived from the poison control call data and the published literature. RESULTS: Annually, an average of 15 ciguatera and 28 scombroid fish-poisoning outbreaks, involving a total of 60 and 108 ill persons, respectively, were reported to FDOSS (2000-2007). NPDS reported an average of 173 exposure calls for ciguatoxin and 200 exposure calls for scombroid fish poisoning annually (2005-2009). After adjusting for undercounting, we estimated 15,910 (90% credible interval [CrI] 4140-37,408) ciguatera fish-poisoning illnesses annually, resulting in 343 (90% CrI 69-851) hospitalizations and three deaths (90% CrI 1-7). We estimated 35,142 (90% CrI: 10,496-78,128) scombroid fish-poisoning illnesses, resulting in 162 (90% CrI 0-558) hospitalizations and 0 deaths. CONCLUSIONS: Ciguatera and scombroid fish poisonings affect more Americans than reported in surveillance systems. Although additional data can improve these assessments, the estimated number of illnesses caused by seafood intoxication illuminates this public health problem. Efforts, including education, can reduce ciguatera and scombroid fish poisonings.


Assuntos
Ciguatera/epidemiologia , Surtos de Doenças , Doenças Transmitidas por Alimentos/epidemiologia , Toxinas Marinhas/intoxicação , Alimentos Marinhos/intoxicação , Animais , Ciguatoxinas , Peixes , Hospitalização , Humanos , Vigilância em Saúde Pública , Estados Unidos/epidemiologia
14.
Public Health Rep ; 138(6): 865-869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683453

RESUMO

The National Poison Data System (NPDS) comprises self-reported information from people who call US poison center hotlines. NPDS data have proven to be important in identifying emerging public health threats. We used NPDS to examine records of people who had self-reported exposure to harmful algal blooms (HABs). Participating poison centers then contacted people who had called their centers from May through October 2019 about their HAB exposure to ask about exposure route, symptoms, health care follow-up, and awareness of possible risks of exposure. Of 55 callers who agreed to participate, 47 (85%) reported exposure to HABs while swimming or bathing in HAB-contaminated water. Nine callers reported health symptoms from being near waters contaminated with HABs, suggesting potential exposure via aerosolized toxins. Symptoms varied by the reported routes of exposure; the most commonly reported symptoms were gastrointestinal and respiratory. More public and health care provider education and outreach are needed to improve the understanding of HAB-related risks, to address ways to prevent HAB-related illnesses, and to describe appropriate support when exposures occur.


Assuntos
Proliferação Nociva de Algas , Venenos , Estados Unidos/epidemiologia , Humanos , Autorrelato , Centros de Controle de Intoxicações , Bases de Dados Factuais
15.
Environ Int ; 163: 107176, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349912

RESUMO

BACKGROUND: Prenatal exposure to drinking water with arsenic concentrations >50 µg/L is associated with adverse birth outcomes, with inconclusive evidence for concentrations ≤50 µg/L. In a collaborative effort by public health experts, hydrologists, and geologists, we used published machine learning model estimates to characterize arsenic concentrations in private wells-federally unregulated for drinking water contaminants-and evaluated associations with birth outcomes throughout the conterminous U.S. METHODS: Using several machine learning models, including boosted regression trees (BRT) and random forest classification (RFC), developed from measured groundwater arsenic concentrations of ∼20,000 private wells, we characterized the probability that arsenic concentrations occurred within specific ranges in groundwater. Probabilistic model estimates and private well usage data were linked by county to all live birth certificates from 2016 (n = 3.6 million). We evaluated associations with gestational age and term birth weight using mixed-effects models, adjusted for potential confounders and incorporated random intercepts for spatial clustering. RESULTS: We generally observed inverse associations with term birth weight. For instance, when using BRT estimates, a 10-percentage point increase in the probability that private well arsenic concentrations exceeded 5 µg/L was associated with a -1.83 g (95% CI: -3.30, -0.38) lower term birth weight after adjusting for covariates. Similarly, a 10-percentage point increase in the probability that private well arsenic concentrations exceeded 10 µg/L was associated with a -2.79 g (95% CI: -4.99, -0.58) lower term birth weight. Associations with gestational age were null. CONCLUSION: In this largest epidemiologic study of arsenic and birth outcomes to date, we did not observe associations of modeled arsenic estimates in private wells with gestational age and found modest inverse associations with term birth weight. Study limitations may have obscured true associations, including measurement error stemming from a lack of individual-level information on primary water sources, water arsenic concentrations, and water consumption patterns.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Peso ao Nascer , Água Potável/análise , Feminino , Humanos , Gravidez , Estados Unidos , Poluentes Químicos da Água/análise , Abastecimento de Água , Poços de Água
16.
Harmful Algae ; 10(4): 374-380, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21532966

RESUMO

To enhance information sharing and garner increased support from the public for scientific research, funding agencies now typically require that research groups receiving support convey their work to stakeholders. The National Institute of Environmental Health Sciences-(NIEHS) funded Aerosolized Florida Red Tide P01 research group (Florida Red Tide Research Group) has employed a variety of outreach strategies to meet this requirement. Messages developed from this project began a decade ago and have evolved from basic print material (fliers and posters) to an interactive website, to the use of video and social networking technologies, such as Facebook and Twitter. The group was able to track dissemination of these information products; however, evaluation of their effectiveness presented much larger challenges. The primary lesson learned by the Florida Red Tide Research Group is that the best ways to reach specific stakeholders is to develop unique products or services to address specific stakeholders needs, such as the Beach Conditions Reporting System. Based on the experience of the Group, the most productive messaging products result when scientific community engages potential stakeholders and outreach experts during the very initial phases of a project.

17.
Harmful Algae ; 10(2): 138-143, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21499552

RESUMO

Blooms of the toxic dinoflagellate, Karenia brevis, produce potent neurotoxins in marine aerosols. Recent studies have demonstrated acute changes in both symptoms and pulmonary function in asthmatics after only 1 hour of beach exposure to these aerosols. This study investigated if there were latent and/or sustained effects in asthmatics in the days following the initial beach exposure during periods with and without an active Florida red tide.Symptom data and spirometry data were collected before and after 1 hour of beach exposure. Subjects kept daily symptom diaries and measured their peak flow each morning for 5 days following beach exposure. During non-exposure periods, there were no significant changes in symptoms or pulmonary function either acutely or over 5 days of follow-up. After the beach exposure during an active Florida red tide, subjects had elevated mean symptoms which did not return to the pre-exposure baseline for at least 4 days. The peak flow measurements decreased after the initial beach exposure, decreased further within 24 hours, and continued to be suppressed even after 5 days. Asthmatics may continue to have increased symptoms and delayed respiratory function suppression for several days after 1 hour of exposure to the Florida red tide toxin aerosols.

18.
Harmful Algae ; 10(6): 744-748, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22053149

RESUMO

Having demonstrated significant and persistent adverse changes in pulmonary function for asthmatics after 1 hour exposure to brevetoxins in Florida red tide (Karenia brevis bloom) aerosols, we assessed the possible longer term health effects in asthmatics from intermittent environmental exposure to brevetoxins over 7 years. 125 asthmatic subjects were assessed for their pulmonary function and reported symptoms before and after 1 hour of environmental exposure to Florida red tide aerosols for upto 11 studies over seven years. As a group, the asthmatics came to the studies with normal standardized percent predicted pulmonary function values. The 38 asthmatics who participated in only one exposure study were more reactive compared to the 36 asthmatics who participated in ≥4 exposure studies. The 36 asthmatics participating in ≥4 exposure studies demonstrated no significant change in their standardized percent predicted pre-exposure pulmonary function over the 7 years of the study. These results indicate that stable asthmatics living in areas with intermittent Florida red tides do not exhibit chronic respiratory effects from intermittent environmental exposure to aerosolized brevetoxins over a 7 year period.

19.
Harmful Algae ; 10(2): 224-233, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21218152

RESUMO

This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue-one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people.

20.
J Environ Health ; 73(7): 31-2, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21413560

RESUMO

The critical public health need to assess and protect the drinking water used by 37 million Americans requires attention and resources. NCEH, in partnership with states, has begun the process to identify information available on unregulated drinking water sources to improve the availability of data to support decisive public health actions and resource allocation. Far more attention and resources are needed to complete this process.


Assuntos
Saúde Pública/normas , Microbiologia da Água/normas , Abastecimento de Água/normas , Monitoramento Ambiental/legislação & jurisprudência , Monitoramento Ambiental/normas , Regulamentação Governamental , Humanos , Estados Unidos , Abastecimento de Água/legislação & jurisprudência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA