Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(46): e2303243120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37943838

RESUMO

Biological ice nucleation plays a key role in the survival of cold-adapted organisms. Several species of bacteria, fungi, and insects produce ice nucleators (INs) that enable ice formation at temperatures above -10 °C. Bacteria and fungi produce particularly potent INs that can promote water crystallization above -5 °C. Bacterial INs consist of extended protein units that aggregate to achieve superior functionality. Despite decades of research, the nature and identity of fungal INs remain elusive. Here, we combine ice nucleation measurements, physicochemical characterization, numerical modeling, and nucleation theory to shed light on the size and nature of the INs from the fungus Fusarium acuminatum. We find ice-binding and ice-shaping activity of Fusarium IN, suggesting a potential connection between ice growth promotion and inhibition. We demonstrate that fungal INs are composed of small 5.3 kDa protein subunits that assemble into ice-nucleating complexes that can contain more than 100 subunits. Fusarium INs retain high ice-nucleation activity even when only the ~12 kDa fraction of size-excluded proteins are initially present, suggesting robust pathways for their functional aggregation in cell-free aqueous environments. We conclude that the use of small proteins to build large assemblies is a common strategy among organisms to create potent biological INs.


Assuntos
Gelo , Água , Congelamento , Temperatura , Proteínas da Membrana Bacteriana Externa/metabolismo
2.
Anal Bioanal Chem ; 414(15): 4457-4470, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35320366

RESUMO

Fast and accurate determination of the protein content of a sample is an important and non-trivial task of many biochemical, biomedical, food chemical, pharmaceutical, and environmental research activities. Different methods of total protein determination are used for a wide range of proteins with highly variable properties in complex matrices. These methods usually work reasonably well for proteins under controlled conditions, but the results for non-standard and complex samples are often questionable. Here, we compare new and well-established methods, including traditional amino acid analysis (AAA), aromatic amino acid analysis (AAAA) based on the amino acids phenylalanine and tyrosine, reversed-phase liquid chromatography of intact proteins with UV absorbance measurements at 220 and 280 nm (LC-220, LC-280), and colorimetric assays like Coomassie Blue G-250 dye-binding assay (Bradford) and bicinchoninic acid (BCA) assay. We investigated different samples, including proteins with challenging properties, chemical modifications, mixtures, and complex matrices like air particulate matter and pollen extracts. All methods yielded accurate and precise results for the protein and matrix used for calibration. AAA, AAAA with fluorescence detection, and the LC-220 method yielded robust results even under more challenging conditions (variable analytes and matrices). These methods turned out to be well-suited for reliable determination of the protein content in a wide range of samples, such as air particulate matter and pollen.


Assuntos
Colorimetria , Proteínas , Aminoácidos/análise , Aminoácidos Aromáticos , Cromatografia Líquida/métodos , Colorimetria/métodos , Material Particulado , Proteínas/análise
3.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299235

RESUMO

The allergenic and inflammatory potential of proteins can be enhanced by chemical modification upon exposure to atmospheric or physiological oxidants. The molecular mechanisms and kinetics of such modifications, however, have not yet been fully resolved. We investigated the oligomerization and nitration of the grass pollen allergen Phl p 5 by ozone (O3), nitrogen dioxide (NO2), and peroxynitrite (ONOO-). Within several hours of exposure to atmospherically relevant concentration levels of O3 and NO2, up to 50% of Phl p 5 were converted into protein oligomers, likely by formation of dityrosine cross-links. Assuming that tyrosine residues are the preferential site of nitration, up to 10% of the 12 tyrosine residues per protein monomer were nitrated. For the reaction with peroxynitrite, the largest oligomer mass fractions (up to 50%) were found for equimolar concentrations of peroxynitrite over tyrosine residues. With excess peroxynitrite, the nitration degrees increased up to 40% whereas the oligomer mass fractions decreased to 20%. Our results suggest that protein oligomerization and nitration are competing processes, which is consistent with a two-step mechanism involving a reactive oxygen intermediate (ROI), as observed for other proteins. The modified proteins can promote pro-inflammatory cellular signaling that may contribute to chronic inflammation and allergies in response to air pollution.


Assuntos
Phleum/metabolismo , Proteínas de Plantas/metabolismo , Rinite Alérgica Sazonal/metabolismo , Alérgenos/química , Cinética , Nitratos/metabolismo , Dióxido de Nitrogênio/química , Óxidos de Nitrogênio , Oxidantes , Ozônio/química , Ácido Peroxinitroso/química , Proteínas de Plantas/análise , Poaceae/metabolismo , Pólen/metabolismo , Proteínas/química , Rinite Alérgica Sazonal/fisiopatologia
4.
Front Allergy ; 4: 1303943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125293

RESUMO

Protein modifications such as oligomerization and tyrosine nitration alter the immune response to allergens and may contribute to the increasing prevalence of allergic diseases. In this mini-review, we summarize and discuss relevant findings for the major birch and grass pollen allergens Bet v 1 and Phl p 5 modified with tetranitromethane (laboratory studies), peroxynitrite (physiological processes), and ozone and nitrogen dioxide (environmental conditions). We focus on tyrosine nitration and the formation of protein dimers and higher oligomers via dityrosine cross-linking and the immunological effects studied.

5.
Front Allergy ; 4: 1066392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873048

RESUMO

The chemical modification of aeroallergens by reactive oxygen and nitrogen species (ROS/RNS) may contribute to the growing prevalence of respiratory allergies in industrialized countries. Post-translational modifications can alter the immunological properties of proteins, but the underlying mechanisms and effects are not well understood. In this study, we investigate the Toll-like receptor 4 (TLR4) activation of the major birch and grass pollen allergens Bet v 1 and Phl p 5, and how the physiological oxidant peroxynitrite (ONOO-) changes the TLR4 activation through protein nitration and the formation of protein dimers and higher oligomers. Of the two allergens, Bet v 1 exhibited no TLR4 activation, but we found TLR4 activation of Phl p 5, which increased after modification with ONOO- and may play a role in the sensitization against this grass pollen allergen. We attribute the TLR4 activation mainly to the two-domain structure of Phl p 5 which may promote TLR4 dimerization and activation. The enhanced TLR4 signaling of the modified allergen indicates that the ONOO--induced modifications affect relevant protein-receptor interactions. This may lead to increased sensitization to the grass pollen allergen and thus contribute to the increasing prevalence of allergies in the Anthropocene, the present era of globally pervasive anthropogenic influence on the environment.

6.
Chem Sci ; 13(17): 5014-5026, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35655890

RESUMO

The freezing of water into ice is a key process that is still not fully understood. It generally requires an impurity of some description to initiate the heterogeneous nucleation of the ice crystals. The molecular structure, as well as the extent of structural order within the impurity in question, both play an essential role in determining its effectiveness. However, disentangling these two contributions is a challenge for both experiments and simulations. In this work, we have systematically investigated the ice-nucleating ability of the very same compound, cholesterol, from the crystalline (and thus ordered) form to disordered self-assembled monolayers. Leveraging a combination of experiments and simulations, we identify a "sweet spot" in terms of the surface coverage of the monolayers, whereby cholesterol maximises its ability to nucleate ice (which remains inferior to that of crystalline cholesterol) by enhancing the structural order of the interfacial water molecules. These findings have practical implications for the rational design of synthetic ice-nucleating agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA