RESUMO
Syncytins are envelope genes of retroviral origin that play a critical role in the formation of a syncytial structure at the fetomaternal interface via their fusogenic activity. The mouse placenta is unique among placental mammals since the fetomaternal interface comprises two syncytiotrophoblast layers (ST-I and ST-II) instead of one observed in all other hemochorial placentae. Each layer specifically expresses a distinct mouse syncytin, namely syncytin-A (SynA) for ST-I and syncytin-B (SynB) for ST-II, which have been shown to be essential to placentogenesis and embryonic development. The cellular receptor for SynA has been identified as the membrane protein LY6E and is not the receptor for SynB. Here, by combining a cell-cell fusion assay with the screening of a human ORFeome-derived expression library, we identified the transmembrane multipass sodium-dependent phosphate transporter 1 PiT1/SLC20A1 as the receptor for SynB. Transfection of cells with the cloned receptor, but not the closely related PiT2/SLC20A2, leads to their fusion with cells expressing SynB, with no cross-reactive fusion activity with SynA. The interaction between the two partners was further demonstrated by immunoprecipitation. PiT1/PiT2 chimera and truncation experiments identified the PiT1 N-terminus as the major determinant for SynB-mediated fusion. RT-qPCR analysis of PiT1 expression on a panel of mouse adult and fetal tissues revealed a concomitant increase of PiT1 and SynB specifically in the developing placenta. Finally, electron microscopy analysis of the placenta of PiT1 null embryo before they die (E11.5) disclosed default of ST-II formation with lack of syncytialization, as previously observed in cognate SynB null placenta, and consistent with the present identification of PiT1 as the SynB partner.IMPORTANCESyncytins are envelope genes of endogenous retroviruses, coopted for a physiological function in placentation. They are fusogenic proteins that mediate cell-cell fusion by interacting with receptors present on the partner cells. Here, by devising an in vitro fusion assay that enables the screening of an ORFeome-derived expression library, we identified the long-sought receptor for syncytin-B (SynB), a mouse syncytin responsible for syncytiotrophoblast formation at the fetomaternal interface of the mouse placenta. This protein - PiT1/SLC20A1 - is a multipass transmembrane protein, also known as the receptor for a series of infectious retroviruses. Its profile of expression is consistent with a role in both ancestral endogenization of a SynB founder retrovirus and present-day mouse placenta formation, with evidence-in PiT1 knockout mice-of unfused cells at the level of the cognate placental syncytiotrophoblast layer.
Assuntos
Produtos do Gene env , Placenta , Proteínas da Gravidez , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III , Animais , Feminino , Humanos , Camundongos , Gravidez , Fusão Celular , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Produtos do Gene env/metabolismo , Produtos do Gene env/genética , Placenta/metabolismo , Placenta/virologia , Placentação , Proteínas da Gravidez/metabolismo , Proteínas da Gravidez/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Trofoblastos/metabolismo , Trofoblastos/virologiaRESUMO
Syncytins are envelope genes from endogenous retroviruses, "captured" for a role in placentation. They mediate cell-cell fusion, resulting in the formation of a syncytium (the syncytiotrophoblast) at the fetomaternal interface. These genes have been found in all placental mammals in which they have been searched for. Cell-cell fusion is also pivotal for muscle fiber formation and repair, where the myotubes are formed from the fusion of mononucleated myoblasts into large multinucleated structures. Here we show, taking advantage of mice knocked out for syncytins, that these captured genes contribute to myoblast fusion, with a >20% reduction in muscle mass, mean muscle fiber area and number of nuclei per fiber in knocked out mice for one of the two murine syncytin genes. Remarkably, this reduction is only observed in males, which subsequently show muscle quantitative traits more similar to those of females. In addition, we show that syncytins also contribute to muscle repair after cardiotoxin-induced injury, with again a male-specific effect on the rate and extent of regeneration. Finally, ex vivo experiments carried out on murine myoblasts demonstrate the direct involvement of syncytins in fusion, with a >40% reduction in fusion index upon addition of siRNA against both syncytins. Importantly, similar effects are observed with primary myoblasts from sheep, dog and human, with a 20-40% reduction upon addition of siRNA against the corresponding syncytins. Altogether, these results show a direct contribution of the fusogenic syncytins to myogenesis, with a demonstrated male-dependence of the effect in mice, suggesting that these captured genes could be responsible for the muscle sexual dimorphism observed in placental mammals.
Assuntos
Produtos do Gene env/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Proteínas da Gravidez/genética , Animais , Diferenciação Celular/genética , Cães , Retrovirus Endógenos/genética , Feminino , Técnicas de Inativação de Genes , Produtos do Gene env/metabolismo , Humanos , Masculino , Mamíferos , Camundongos , Músculo Esquelético/crescimento & desenvolvimento , Proteínas da Gravidez/metabolismo , RNA Interferente Pequeno/genética , Regeneração/genética , Caracteres SexuaisRESUMO
Syncytin genes are envelope genes of retroviral origin that have been exapted for a role in placentation. They are involved in the formation of a syncytial structure (the syncytiotrophoblast) at the fetomaternal interface via their fusogenic activity. The mouse placenta is unique among placental mammals since the fetomaternal interface comprises two syncytiotrophoblast layers (ST-I and ST-II) instead of one, as observed in humans and all other hemochorial placentae. Each layer specifically expresses a distinct mouse syncytin, namely, syncytin-A (SynA) for ST-I and syncytin-B (SynB) for ST-II, which have been shown to be essential to placentogenesis and embryo survival. Their cognate cellular receptors, which are necessary to mediate cell-cell fusion and syncytiotrophoblast formation, are still unknown. By devising a sensitive method that combines a cell-cell fusion assay with the screening of a mouse cDNA library, we succeeded in identifying the glycosylphosphatidylinositol (GPI)-anchored membrane protein lymphocyte antigen 6E (Ly6e) as a candidate receptor for SynA. Transfection of cells with the cloned receptor led to their fusion to cells expressing SynA, with no cross-reactive fusion activity with SynB. Knocking down Ly6e greatly reduced SynA-induced cell fusion, thus suggesting that Ly6e is the sole receptor for SynA in vivo Interaction of SynA with Ly6e was further demonstrated by a competition assay using the soluble ectodomain of Ly6e. Finally, reverse transcription-quantitative PCR (RT-qPCR) analysis of Ly6e expression on a representative panel of mouse tissues shows that it is significantly expressed in the mouse placenta together with SynA.IMPORTANCE Syncytin genes are envelope genes of endogenous retroviruses, co-opted for a physiological function in placentation. Syncytins are fusogenic proteins that mediate cell-cell fusion by interacting with receptors present on the partner cells. Here, by devising a sensitive in vitro fusion assay that enables the high-throughput screening of normalized cDNA libraries, we identified the long-sought receptor for syncytin-A (SynA), a mouse syncytin responsible for syncytiotrophoblast formation at the maternofetal interface of the mouse placenta. This protein, Ly6e (lymphocyte antigen 6E), is a GPI-anchored membrane protein, and small interfering RNA (siRNA) experiments targeting its deletion as well as a decoy assay using a recombinant soluble receptor show that Ly6e is the necessary and sufficient partner of SynA. Its profile of expression is consistent with a role in both ancestral endogenization of a SynA founder retrovirus and present-day placenta formation. This study provides a powerful general method to identify genes involved in cell-cell fusion processes.
Assuntos
Antígenos Ly/metabolismo , Fusão Celular , Proteínas da Gravidez/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Antígenos Ly/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Testes Genéticos/métodos , Camundongos , Receptores de Superfície Celular/genéticaRESUMO
Rad53 is a conserved protein kinase with a central role in DNA damage response and nucleotide metabolism. We observed that the expression of a dominant-lethal form of RAD53 leads to significant expression changes for at least 16 genes, including the RNR3 and the HUG1 genes, both of which are involved in the control of nucleotide metabolism. We established by multiple biophysical and biochemical approaches that Hug1 is an intrinsically disordered protein that directly binds to the small RNR subunit Rnr2. We characterized the surface of interaction involved in Hug1 binding to Rnr2, and we thus defined a new binding region to Rnr2. Moreover, we show that Hug1 is deleterious to cell growth in the context of reduced RNR activity. This inhibitory effect of Hug1 on RNR activity depends on the binding of Hug1 to Rnr2. We propose a model in which Hug1 modulates Rnr2-Rnr1 association by binding Rnr2. We show that Hug1 accumulates under various physiological conditions of high RNR induction. Hence, both the regulation and the mode of action of Hug1 are different from those of the small protein inhibitors Dif1 and Sml1, and Hug1 can be considered as a regulator for fine-tuning of RNR activity.
Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/enzimologia , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA , Replicação do DNA , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Proteínas Intrinsicamente Desordenadas/química , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Ribonucleotídeo Redutases/análise , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/genética , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
During replication, DNA damage can challenge replication fork progression and cell viability. Homologous Recombination (HR) and Translesion Synthesis (TLS) pathways appear as major players involved in the resumption and completion of DNA replication. How both pathways are coordinated in human cells to maintain genome stability is unclear. Numerous helicases are involved in HR regulation. Among them, the helicase FBH1 accumulates at sites of DNA damage and potentially constrains HR via its anti-recombinase activity. However, little is known about its regulation in vivo. Here, we report a mechanism that controls the degradation of FBH1 after DNA damage. Firstly, we found that the sliding clamp Proliferating Cell Nuclear Antigen (PCNA) is critical for FBH1 recruitment to replication factories or DNA damage sites. We then showed the anti-recombinase activity of FBH1 is partially dependent on its interaction with PCNA. Intriguingly, after its re-localization, FBH1 is targeted for degradation by the Cullin-ring ligase 4-Cdt2 (CRL4(Cdt2))-PCNA pathway via a PCNA-interacting peptide (PIP) degron. Importantly, expression of non-degradable FBH1 mutant impairs the recruitment of the TLS polymerase eta to chromatin in UV-irradiated cells. Thus, we propose that after DNA damage, FBH1 might be required to restrict HR and then degraded by the Cdt2-proteasome pathway to facilitate TLS pathway.
Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular , Cromatina/enzimologia , DNA Helicases/química , Proteínas de Ligação a DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Recombinação Homóloga , Humanos , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Raios UltravioletaRESUMO
Intercellular protein-protein interactions (PPIs) have pivotal roles in biological functions and diseases. Membrane proteins are therefore a major class of drug targets. However, studying such intercellular PPIs is challenging because of the properties of membrane proteins. Current methods commonly use purified or modified proteins that are not physiologically relevant and hence might mischaracterize interactions occurring in vivo. Here, we describe Cell-Int: a cell interaction assay for studying plasma membrane PPIs. The interaction signal is measured through conjugate formation between two populations of cells each expressing either a ligand or a receptor. In these settings, membrane proteins are in their native environment thus being physiologically relevant. Cell-Int has been applied to the study of diverse protein partners, and enables to investigate the inhibitory potential of blocking antibodies, as well as the retargeting of fusion proteins for therapeutic development. The assay was also validated for screening applications and could serve as a platform for identifying new protein interactors.