Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Pancreatology ; 20(5): 852-859, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32595109

RESUMO

INTRODUCTION: Chronic pancreatitis is a chronic inflammatory disease, which progresses to fibrosis. Currently there are no interventions to delay or stop the progression to irreversible organ damage. In this study, we assessed the tolerability and feasibility of administering soy bread to reduce circulating inflammatory mediators. METHODS: Subjects with chronic pancreatitis diagnosed using the American Pancreatic Association diagnostic guidelines were enrolled. During the dose escalation (DE) phase, subjects received one week of soy bread based using a 3 + 3 dose-escalation design, which was then followed by a maximally tolerated dose (MTD) phase with four weeks of intervention. Dose-limiting toxicities (DLTs) were monitored. Plasma cytokine levels were measured using a Meso Scale Discovery multiplex assay kit. Isoflavonoid excretion in 24-h urine collection was used to measure soy bread compliance. RESULTS: Nine subjects completed the DE phase, and one subject completed the MTD phase without any DLTs at a maximum dosage of three slices (99 mg of isoflavones) per day. Reported compliance to soy bread intervention was 98%, and this was confirmed with urinary isoflavones and their metabolites detected in all subjects. There was a significant decline in the TNF-α level during the DE phase (2.667 vs 2.382 pg/mL, p = 0.039); other levels were similar. CONCLUSIONS: In this feasibility study, there was excellent compliance with a short-term intervention using soy bread in chronic pancreatitis. Reduction was seen in at least one pro-inflammatory cytokine with short-term intervention. Larger cohorts and longer interventions with soy are warranted to assess the efficacy of reducing pro-inflammatory mediators of disease.


Assuntos
Pão , Glycine max , Pancreatite Crônica/dietoterapia , Pancreatite Crônica/patologia , Idoso , Citocinas/sangue , Relação Dose-Resposta a Droga , Estudos de Viabilidade , Feminino , Humanos , Inflamação/dietoterapia , Inflamação/patologia , Mediadores da Inflamação/sangue , Isoflavonas/urina , Masculino , Pessoa de Meia-Idade , Cooperação do Paciente , Projetos Piloto , Fator de Necrose Tumoral alfa/sangue
2.
Pancreatology ; 19(1): 80-87, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30497874

RESUMO

BACKGROUND: Cachexia is a wasting syndrome characterized by involuntary loss of >5% body weight due to depletion of adipose and skeletal muscle mass. In cancer, the pro-inflammatory cytokine interleukin-6 (IL-6) is considered a mediator of cachexia and a potential biomarker, but the relationship between IL-6, weight loss, and cancer stage is unknown. In this study we sought to evaluate IL-6 as a biomarker of cancer cachexia while accounting for disease progression. METHODS: We retrospectively studied 136 subjects with biopsy-proven pancreatic ductal adenocarcinoma (PDAC), considering the high prevalence of cachexia is this population. Clinical data were abstracted from subjects in all cancer stages, and plasma IL-6 levels were measured using a multiplex array and a more sensitive ELISA. Data were evaluated with univariate comparisons, including Kaplan-Meier survival curves, and multivariate Cox survival models. RESULTS: On multiplex, a total of 43 (31.4%) subjects had detectable levels of plasma IL-6, while by ELISA all subjects had detectable IL-6 levels. We found that increased plasma IL-6 levels, defined as detectable for multiplex and greater than median for ELISA, were not associated with weight loss at diagnosis, but rather with the presence of metastasis (p < 0.001 for multiplex and p = 0.007 for ELISA). Further, while >5% weight loss was not associated with worse survival, increased plasma IL-6 by either methodology was. CONCLUSION: Circulating IL-6 levels do not correlate with cachexia (when defined by weight loss), but rather with advanced cancer stage. This suggests that IL-6 may mediate wasting, but should not be considered a diagnostic biomarker for PDAC-induced cachexia.


Assuntos
Caquexia/sangue , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/metabolismo , Interleucina-6/sangue , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Idoso , Biomarcadores Tumorais , Progressão da Doença , Feminino , Humanos , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
3.
Cancers (Basel) ; 16(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38672672

RESUMO

MYCN amplification (MNA) and disruption of tumor suppressor microRNA (TSmiR) function are key drivers of poor outcomes in neuroblastoma (NB). While MYCN and TSmiRs regulate glucose metabolism, their role in de novo fatty acid synthesis (FAS) and unsaturated FAS (UFAS) remains poorly understood. Here, we show that FAS and UFAS (U/FAS) genes FASN, ELOVL6, SCD, FADS2, and FADS1 are upregulated in high-risk (HR) NB and that their expression is associated with lower overall survival. RNA-Seq analysis of human NB cell lines revealed parallel U/FAS gene expression patterns. Consistent with this, we found that NB-related TSmiRs were predicted to target these genes extensively. We further observed that both MYC and MYCN upregulated U/FAS pathway genes while suppressing TSmiR host gene expression, suggesting a possible U/FAS regulatory network between MYCN and TSmiRs in NB. NB cells are high in de novo synthesized omega 9 (ω9) unsaturated fatty acids and low in both ω6 and ω3, suggesting a means for NB to limit cell-autonomous immune stimulation and reactive oxygen species (ROS)-driven apoptosis from ω6 and ω3 unsaturated fatty acid derivatives, respectively. We propose a model in which MYCN and TSmiRs regulate U/FAS and play an important role in NB pathology, with implications for other MYC family-driven cancers.

4.
Pancreas ; 53(5): e416-e423, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38530954

RESUMO

OBJECTIVES: Chronic pancreatitis (CP) is an inflammatory disease affecting the absorption of fat-soluble nutrients. Signaling in pancreatic cells that lead to inflammation may be influenced by fatty acids (FAs) through diet and de novo lipogenesis. Here, we investigated the relationship between plasma FA composition in CP with heterogeneity of etiology and complications of CP. MATERIALS AND METHODS: Blood and clinical parameters were collected from subjects with CP (n = 47) and controls (n = 22). Plasma was analyzed for FA composition using gas chromatography and compared between controls and CP and within CP. RESULTS: Palmitic acid increased, and linoleic acid decreased in CP compared with controls. Correlations between age or body mass index and FAs are altered in CP compared with controls. Diabetes, pancreatic calcifications, and substance usage, but not exocrine pancreatic dysfunction, were associated with differences in oleic acid and linoleic acid relative abundance in CP. De novo lipogenesis index was increased in the plasma of subjects with CP compared with controls and in calcific CP compared with noncalcific CP. CONCLUSIONS: Fatty acids that are markers of de novo lipogenesis and linoleic acid are dysregulated in CP depending on the etiology or complication. These results enhance our understanding of CP and highlight potential pathways targeting FAs for treating CP.


Assuntos
Ácidos Graxos , Ácido Linoleico , Pancreatite Crônica , Humanos , Projetos Piloto , Pancreatite Crônica/sangue , Pancreatite Crônica/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Ácidos Graxos/sangue , Ácido Linoleico/sangue , Estudos de Casos e Controles , Lipogênese , Idoso , Ácido Palmítico/sangue , Ácido Oleico/sangue , Biomarcadores/sangue
5.
Cancer Res ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38781455

RESUMO

Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), a deadly disease with limited preventive strategies. Lifestyle interventions to decrease obesity represent a potential approach to prevent obesity-associated PDAC. Here, we examined whether decreasing obesity through physical activity (PA) and/or dietary changes could decrease inflammation in humans and prevent obesity-associated PDAC in mice. Comparison of circulating inflammatory-associated cytokines in subjects (overweight and obese) before and after a PA intervention revealed PA lowered systemic inflammatory cytokines. Mice with pancreatic-specific inducible KrasG12D expression were exposed to PA and/or dietary interventions during and after obesity-associated cancer initiation. In mice with concurrent diet-induced obesity (DIO) and KrasG12D expression, the PA intervention led to lower weight gain, suppressed systemic inflammation, delayed tumor progression, and decreased pro-inflammatory signals in the adipose tissue. However, these benefits were not as evident when obesity preceded pancreatic KrasG12D expression. Combining PA with diet-induced weight loss (DI-WL) delayed obesity-associated PDAC progression in the genetically engineered mouse model, but neither PA alone nor combined with DI-WL or chemotherapy prevented PDAC tumor growth in orthotopic PDAC models regardless of obesity status. PA led to upregulation of IL-15ra in adipose tissue. Adipose-specific overexpression of IL-15 slowed PDAC growth but only in non-obese mice. Overall, our study suggests that PA alone or combined with DI-WL can reduce inflammation and delay obesity-associated PDAC development or progression. Lifestyle interventions that prevent or manage obesity or therapies that target weight loss-related molecular pathways could prevent progression of PDAC.

6.
bioRxiv ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36711757

RESUMO

Objectives: Chronic pancreatitis (CP) is an inflammatory disease that affects the absorption of nutrients like fats. Molecular signaling in pancreatic cells can be influenced by fatty acids (FAs) and changes in FA abundance could impact CP-associated complications. Here, we investigated FA abundance in CP compared to controls and explored how CP-associated complications and risk factors affect FA abundance. Methods: Blood and clinical parameters were collected from subjects with (n=47) and without CP (n=22). Plasma was analyzed for relative FA abundance using gas chromatography and compared between controls and CP. Changes in FA abundance due to clinical parameters were also assessed in both groups. Results: Decreased relative abundance of polyunsaturated fatty acids (PUFAs) and increased monounsaturated fatty acids (MUFAs) were observed in subjects with CP in a sex-dependent manner. The relative abundance of linoleic acid increased, and oleic acid decreased in CP subjects with exocrine pancreatic dysfunction and a history of substance abuse. Conclusions: Plasma FAs like linoleic acid are dysregulated in CP in a sex-dependent manner. Additionally, risk factors and metabolic dysfunction further dysregulate FA abundance in CP. These results enhance our understanding of CP and highlight potential novel targets and metabolism-related pathways for treating CP.

7.
bioRxiv ; 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36711764

RESUMO

BACKGROUND & AIMS: Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), a deadly disease with limited preventive strategies. Lifestyle interventions to decrease obesity might prevent obesity-associated PDAC. Here, we examined whether decreasing obesity by increased physical activity (PA) and/or dietary changes would decrease inflammation in humans and prevent PDAC in mice. METHODS: Circulating inflammatory-associated cytokines of overweight and obese subjects before and after a PA intervention were compared. PDAC pre-clinical models were exposed to PA and/or dietary interventions after obesity-associated cancer initiation. Body composition, tumor progression, growth, fibrosis, inflammation, and transcriptomic changes in the adipose tissue were evaluated. RESULTS: PA decreased the levels of systemic inflammatory cytokines in overweight and obese subjects. PDAC mice on a diet-induced obesity (DIO) and PA intervention, had delayed weight gain, decreased systemic inflammation, lower grade pancreatic intraepithelial neoplasia lesions, reduced PDAC incidence, and increased anti-inflammatory signals in the adipose tissue compared to controls. PA had additional cancer prevention benefits when combined with a non-obesogenic diet after DIO. However, weight loss through PA alone or combined with a dietary intervention did not prevent tumor growth in an orthotopic PDAC model. Adipose-specific targeting of interleukin (IL)-15, an anti-inflammatory cytokine induced by PA in the adipose tissue, slowed PDAC growth. CONCLUSIONS: PA alone or combined with diet-induced weight loss delayed the progression of PDAC and reduced systemic and adipose inflammatory signals. Therefore, obesity management via dietary interventions and/or PA, or modulating weight loss related pathways could prevent obesity-associated PDAC in high-risk obese individuals.

8.
Methods Mol Biol ; 2435: 195-201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34993948

RESUMO

Obesity is a major risk factor for the development of multiple cancers. In efforts to develop models that will assist the scientific community in studying the mechanisms of this risk, a diet-induced obesity model of obesity is often utilized. Here we describe the use of diet-induced obesity (DIO) diets to study the effects of high-fat diet weight gain in the context of cancer mouse models.


Assuntos
Neoplasias , Obesidade , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Camundongos , Neoplasias/complicações , Obesidade/complicações , Aumento de Peso
9.
Cells ; 11(5)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35269531

RESUMO

Cachexia occurs in up to 80% of pancreatic ductal adenocarcinoma (PDAC) patients and is characterized by unintentional weight loss and tissue wasting. To understand the metabolic changes that occur in PDAC-associated cachexia, we compared the abundance of plasma fatty acids (FAs), measured by gas chromatography, of subjects with treatment-naïve metastatic PDAC with or without cachexia, defined as a loss of > 2% weight and evidence of sarcopenia (n = 43). The abundance of saturated, monounsaturated, and polyunsaturated FAs was not different between subjects with cachexia and those without. Oleic acid was significantly higher in subjects with cachexia (p = 0.0007) and diabetes (p = 0.015). Lauric (r = 0.592, p = 0.0096) and eicosapentaenoic (r = 0.564, p = 0.015) acids were positively correlated with age in cachexia patients. Subjects with diabetes (p = 0.021) or both diabetes and cachexia (p = 0.092) had low palmitic:oleic acid ratios. Linoleic acid was lower in subjects with diabetes (p = 0.018) and correlated with hemoglobin (r = 0.519, p = 0.033) and albumin (r = 0.577, p = 0.015) in subjects with cachexia. Oleic or linoleic acid may be useful treatment targets or biomarkers of cachexia in patients with metastatic PDAC, particularly those with diabetes.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/complicações , Caquexia/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Ácidos Graxos/metabolismo , Humanos , Ácidos Linoleicos , Ácido Oleico , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas
10.
Pancreas ; 50(1): 17-28, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33370019

RESUMO

OBJECTIVES: Endoscopic pancreatic function tests are used to diagnose pancreatic diseases and are a viable source for the discovery of biomarkers to better characterize pancreatic disorders. However, pancreatic fluid (PF) contains active enzymes that degrade biomolecules. Therefore, we tested how preservation methods and time to storage influence the integrity and quality of proteins and nucleic acids. METHODS: We obtained PF from 9 subjects who underwent an endoscopic pancreatic function test. Samples were snap frozen at the time of collection; after 1, 2, and 4 hours on ice; or after storage overnight at 4°C with or without RNase or protease inhibitors (PIs). Electrophoresis and mass spectrometry analysis determined protein abundance and quality, whereas nucleic acid integrity values determined DNA and RNA degradation. RESULTS: Protein degradation increased after 4 hours on ice and DNA degradation after 2 hours on ice. Adding PIs delayed degradation. RNA was significantly degraded under all conditions compared with the snap frozen samples. Isolated RNA from PF-derived exosomes exhibited similar poor quality as RNA isolated from matched PF samples. CONCLUSIONS: Adding PIs immediately after collecting PF and processing the fluid within 4 hours of collection maintains the protein and nucleic acid integrity for use in downstream molecular analyses.


Assuntos
Ácidos Nucleicos/análise , Pancreatopatias/diagnóstico , Testes de Função Pancreática , Suco Pancreático/química , Proteínas/análise , Manejo de Espécimes , Biomarcadores/análise , Temperatura Baixa , Dano ao DNA , Endoscopia do Sistema Digestório , Congelamento , Humanos , Pancreatopatias/genética , Pancreatopatias/metabolismo , Valor Preditivo dos Testes , Inibidores de Proteases/farmacologia , Estabilidade Proteica , Proteólise , Estabilidade de RNA , Ribonucleases/antagonistas & inibidores , Ribonucleases/metabolismo , Secretina/administração & dosagem , Fatores de Tempo , Fluxo de Trabalho
11.
Cancer Res ; 77(10): 2647-2660, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28249896

RESUMO

Lipocalin-2 (LCN2) promotes malignant development in many cancer types. LCN2 is upregulated in patients with pancreatic ductal adenocarcinoma (PDAC) and in obese individuals, but whether it contributes to PDAC development is unclear. In this study, we investigated the effects of Lcn2 depletion on diet-induced obesity, inflammation, and PDAC development. Mice with acinar cell-specific expression of KrasG12D were crossed with Lcn2-depleted animals and fed isocaloric diets with varying amounts of fat content. Pancreas were collected and analyzed for inflammation, pancreatic intraepithelial neoplasia (PanIN), and PDAC. We also used a syngeneic orthotopic PDAC mouse model to study tumor growth in the presence or absence of Lcn2 expression. In addition, to understand the mechanistic role of how LCN2 could be mediating PDAC, we studied LCN2 and its specific receptor solute carrier family 22 member 17 (SLC22A17) in human pancreatic cancer stellate cells (PSC), key mediators of the PDAC stroma. Depletion of Lcn2 diminished extracellular matrix deposition, immune cell infiltration, PanIN formation, and tumor growth. Notably, it also increased survival in both obesity-driven and syngeneic orthotopic PDAC mouse models. LCN2 modulated the secretion of proinflammatory cytokines in PSC of the PDAC tumor microenvironment, whereas downregulation of LCN2-specific receptor SLC22A17 blocked these effects. Our results reveal how LCN2 acts in the tumor microenvironment links obesity, inflammation, and PDAC development. Cancer Res; 77(10); 2647-60. ©2017 AACR.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Lipocalina-2/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Estimativa de Kaplan-Meier , Lipocalina-2/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Prognóstico , RNA Interferente Pequeno/genética , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA