Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792030

RESUMO

This study employs density functional theory (DFT) calculations at the B3LYP/6-311+g(d,p) level to investigate the interaction of XH3 gases (X = N, P, As) with the Mn-phthalocyanine molecule (MnPc). Grimme's D3 dispersion correction is applied to consider long-range interactions. The adsorption behavior is explored under the influence of an external static electric field (EF) ranging from -0.514 to 0.514 V/Å. Chemical adsorption of XH3 molecules onto the MnPc molecule is confirmed. The adsorption results in a significant decrease in the energy gap (Eg) of MnPc, indicating the potential alteration of its optical properties. Quantum theory of atoms in molecules (QTAIM) analysis reveals partially covalent bonds between XH3 and MnPc, and the charge density differenc (Δρ) calculations suggest a charge donation-back donation mechanism. The UV-vis spectrum of MnPc experiences a blue shift upon XH3 adsorption, highlighting MnPc's potential as a naked-eye sensor for XH3 molecules. Thermodynamic calculations indicate exothermic interactions, with NH3/MnPc being the most stable complex. The stability of NH3/MnPc decreases with increasing temperature. The direction and magnitude of the applied electric field (EF) play a crucial role in determining the adsorption energy (Eads) for XH3/MnPc complexes. The Eg values decrease with an increasing negative EF, which suggests that the electrical conductivity (σ) and the electrical sensitivity (ΔEg) of the XH3/MnPc complexes are influenced by the magnitude and direction of the applied EF. Overall, this study provides valuable insights into the suggested promising prospects for the utilization of MnPc in sensing applications of XH3 gases.

2.
Nanomaterials (Basel) ; 14(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202462

RESUMO

DFT and TD-DFT studies of B3LYP/6-31 g(d,p) with the D2 version of Grimme's dispersion are used to examine the adsorption of a CH2O molecule on Be12O12 and MBe12O12 nano-cages (M = K, Mn, or Cu atom). The energy gap for Be12O12 was 8.210 eV, while the M encapsulation decreased its value to 0.685-1.568 eV, whereas the adsorption of the CH2O gas decreased the Eg values for Be12O12 and CuBe12O12 to 4.983 and 0.876 eV and increased its values for KBe12O12 and MnBe12O12 to 1.286 and 1.516 eV, respectively. The M encapsulation enhanced the chemical adsorption of CH2O gas with the surface of Be12O12. The UV-vis spectrum of the Be12O12 nano-cage was dramatically affected by the M encapsulation as well as the adsorption of the CH2O gas. In addition, the adsorption energies and the electrical sensitivity of the Be12O12 as well as the MBe12O12 nano-cages to CH2O gas could be manipulated with an external electric field. Our results may be fruitful for utilizing Be12O12 as well as MBe12O12 nano-cages as candidate materials for removing and sensing formaldehyde gas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA