RESUMO
Fruit flies (Diptera: Tephritidae) are major pests of fruits and vegetables worldwide. We measured the efficacy of attractive lure mixtures in baited traps on naturally-occurring fruit flies in commercial mosaic guava and vegetables fields in Pakistan. We tested three mixtures (methyl-eugenol [ME] and cue lure [CL]; GF-120 and methyl eugenol; and GF-120 and cue lure) in eleven ratios: 0:100, 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20, 90:10, and 100:0. We recorded three fruit fly species: Bactrocera zonata was the most abundant in baited traps, followed by Bactrocera dorsalis, while Zeugodacus cucurbitae was significantly less attracted to baited traps. We also found that the most attractive mixture and ratio varied among species: B. dorsalis was most attracted by 40CL:60ME, while B. zonata was most and equally attracted by 100ME, 10CL:90ME, 20CL:80ME, 30CL:70ME, and 40CL:60ME. Finally, Z. cucurbitae was most attracted by 10CL:90ME, which resulted in the highest total number of flies counted in 10CL:90ME-baited traps. Mixtures with GF-120 were less attractive to all three species. Our results suggest that lure mixtures in baited traps influence the attraction of fruit flies in a species-specific way. This needs to be considered in the integrated pest management of multiple species of fruit flies simultaneously. If Bactrocera species are most damaging and abundant, a 40CL:60ME mixture in baited traps will likely be most effective to reduce pest abundance and crop damage. However, if Z. cucurbitae is the main pest target causing most crop damage and yield loss, 10CL:90ME-baited traps will be a more effective in their monitoring and management.
RESUMO
The cotton mealybug, Phenacoccus solenopsis Tinsley (Sternorrhyncha: Pseudococcidae) is a serious pest of various cultivated plants in Pakistan. Recent reports show that the parasitoid Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae) is a good biocontrol agent of the pest. Compatibleness is important in any IPM programme, and the insecticide used must have little or no effects on the biological control agent. This study investigated the compatibility of neem treatments and a commercial insecticide, imidacloprid on A. bambawalei. Bioassays were laid out in a completely randomized design (CRD) under laboratory conditions. Results showed that the adult stage of the parasitoid was more susceptible to the commercial insecticide imidacloprid than the concealed pupal stage. Moreover, on the basis of the International Organization for Biological Control (IOBC) toxicity categories of the commercial insecticide, imidacloprid was moderately toxic throughout the study period (Ex >80%) while neem was slightly toxic after 24 h of use (Ex <80%). Results also suggest that A. bambawalei release should be delayed for at least 1 week after neem treatments. Because imidacloprid destroys A. bambawalei, it might cause resurgence of P. solenopsis; thus, farmers should avoid integrating the insecticide in the control of P. solenopsis.